This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.26 . (Contributed by NM, 28-Jan-1997) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.26 | |- ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A ( ph /\ ps ) -> A. x e. A ph ) |
| 3 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 4 | 3 | ralimi | |- ( A. x e. A ( ph /\ ps ) -> A. x e. A ps ) |
| 5 | 2 4 | jca | |- ( A. x e. A ( ph /\ ps ) -> ( A. x e. A ph /\ A. x e. A ps ) ) |
| 6 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
| 7 | 6 | ral2imi | |- ( A. x e. A ph -> ( A. x e. A ps -> A. x e. A ( ph /\ ps ) ) ) |
| 8 | 7 | imp | |- ( ( A. x e. A ph /\ A. x e. A ps ) -> A. x e. A ( ph /\ ps ) ) |
| 9 | 5 8 | impbii | |- ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) |