This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rolle's theorem. If F is a real continuous function on [ A , B ] which is differentiable on ( A , B ) , and F ( A ) = F ( B ) , then there is some x e. ( A , B ) such that ( RR _D F )x = 0 . (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rolle.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| rolle.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| rolle.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| rolle.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| rolle.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| rolle.e | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) | ||
| Assertion | rolle | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rolle.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | rolle.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | rolle.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | rolle.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | rolle.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 6 | rolle.e | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 7 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 | 1 2 7 4 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | reeanv | ⊢ ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝜑 → ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 | r19.26 | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 12 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 ∈ ℝ ) |
| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐵 ∈ ℝ ) |
| 14 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 < 𝐵 ) |
| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 16 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 17 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ) | |
| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 19 | fveq2 | ⊢ ( 𝑦 = 𝑡 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑡 ) ) | |
| 20 | 19 | breq1d | ⊢ ( 𝑦 = 𝑡 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) ) |
| 21 | 20 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 22 | 18 21 | sylib | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 23 | 22 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 25 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) | |
| 26 | 12 13 14 15 16 23 24 25 | rollelem | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 27 | 26 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ¬ 𝑢 ∈ { 𝐴 , 𝐵 } → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 28 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 ∈ ℝ ) |
| 29 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐵 ∈ ℝ ) |
| 30 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 < 𝐵 ) |
| 31 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 32 | 4 31 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℝ ) |
| 34 | 33 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑢 ) ∈ ℝ ) |
| 35 | 34 | fmpttd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 36 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 37 | ssid | ⊢ ℂ ⊆ ℂ | |
| 38 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 39 | 36 37 38 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 40 | 39 4 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 41 | eqid | ⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) | |
| 42 | 41 | negfcncf | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 43 | 40 42 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 44 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | |
| 45 | 36 43 44 | sylancr | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 46 | 35 45 | mpbird | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 48 | 36 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 49 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 50 | 1 2 49 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 51 | fss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 52 | 32 36 51 | sylancl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 54 | 53 | negcld | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 55 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 56 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 57 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 58 | 1 2 57 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 59 | 48 50 54 55 56 58 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 60 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 61 | 60 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 62 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 63 | 62 | sseli | ⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 64 | 63 53 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 65 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V ) | |
| 66 | 32 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) |
| 67 | 66 | oveq2d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 68 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 69 | 5 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 70 | 68 69 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 71 | 70 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 72 | 48 50 53 55 56 58 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 73 | 67 71 72 | 3eqtr3rd | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 74 | 61 64 65 73 | dvmptneg | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 75 | 59 74 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 76 | 75 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 77 | dmmptg | ⊢ ( ∀ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V → dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 78 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V | |
| 79 | 78 | a1i | ⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V ) |
| 80 | 77 79 | mprg | ⊢ dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝐴 (,) 𝐵 ) |
| 81 | 76 80 | eqtrdi | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 83 | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) | |
| 84 | 32 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 85 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 86 | 84 85 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ℝ ) |
| 87 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 88 | 87 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 89 | 86 88 | lenegd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑣 ) ) ) |
| 90 | fveq2 | ⊢ ( 𝑢 = 𝑦 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 91 | 90 | negeqd | ⊢ ( 𝑢 = 𝑦 → - ( 𝐹 ‘ 𝑢 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 92 | negex | ⊢ - ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 93 | 91 41 92 | fvmpt | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 94 | 93 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 95 | fveq2 | ⊢ ( 𝑢 = 𝑣 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 96 | 95 | negeqd | ⊢ ( 𝑢 = 𝑣 → - ( 𝐹 ‘ 𝑢 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 97 | negex | ⊢ - ( 𝐹 ‘ 𝑣 ) ∈ V | |
| 98 | 96 41 97 | fvmpt | ⊢ ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 99 | 85 98 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 100 | 94 99 | breq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑣 ) ) ) |
| 101 | 89 100 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 102 | 83 101 | imbitrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 103 | 102 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 104 | 103 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 105 | fveq2 | ⊢ ( 𝑦 = 𝑡 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ) | |
| 106 | 105 | breq1d | ⊢ ( 𝑦 = 𝑡 → ( ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 107 | 106 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 108 | 104 107 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 109 | 108 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 110 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 111 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) | |
| 112 | 28 29 30 47 82 109 110 111 | rollelem | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ) |
| 113 | 75 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 ) ) |
| 114 | fveq2 | ⊢ ( 𝑢 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑢 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 115 | 114 | negeqd | ⊢ ( 𝑢 = 𝑥 → - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 116 | eqid | ⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) | |
| 117 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ V | |
| 118 | 115 116 117 | fvmpt | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 119 | 113 118 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 120 | 119 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 121 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↔ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 122 | 121 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
| 123 | 68 | ffvelcdmi | ⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 125 | 124 | negeq0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ↔ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 126 | 120 125 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 127 | 126 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 128 | 127 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 129 | 112 128 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 130 | 129 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ¬ 𝑣 ∈ { 𝐴 , 𝐵 } → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 131 | vex | ⊢ 𝑢 ∈ V | |
| 132 | 131 | elpr | ⊢ ( 𝑢 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑢 = 𝐴 ∨ 𝑢 = 𝐵 ) ) |
| 133 | fveq2 | ⊢ ( 𝑢 = 𝐴 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 134 | 133 | a1i | ⊢ ( 𝜑 → ( 𝑢 = 𝐴 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 135 | 6 | eqcomd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 136 | fveqeq2 | ⊢ ( 𝑢 = 𝐵 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ) ) | |
| 137 | 135 136 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑢 = 𝐵 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 138 | 134 137 | jaod | ⊢ ( 𝜑 → ( ( 𝑢 = 𝐴 ∨ 𝑢 = 𝐵 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 139 | 132 138 | biimtrid | ⊢ ( 𝜑 → ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 140 | eleq1w | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 ∈ { 𝐴 , 𝐵 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) | |
| 141 | fveqeq2 | ⊢ ( 𝑢 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) | |
| 142 | 140 141 | imbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 143 | 142 | imbi2d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝜑 → ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) ↔ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 144 | 143 139 | chvarvv | ⊢ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 145 | 139 144 | anim12d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 146 | 145 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 147 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 148 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 149 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 150 | 147 148 7 149 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 | 32 150 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 152 | 151 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 153 | 88 152 | letri3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 154 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 155 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 156 | 154 155 | bi2anan9 | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 157 | 156 | bibi2d | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 158 | 153 157 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 159 | 158 | impancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 160 | 159 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 161 | 160 | ralbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 162 | 32 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 163 | fnconstg | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) | |
| 164 | 151 163 | syl | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
| 165 | eqfnfv | ⊢ ( ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) ∧ ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) | |
| 166 | 162 164 165 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) |
| 167 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 168 | 167 | fvconst2 | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 169 | 168 | eqeq2d | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 170 | 169 | ralbiia | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 171 | 166 170 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 172 | ioon0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) | |
| 173 | 147 148 172 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) |
| 174 | 3 173 | mpbird | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 175 | fconstmpt | ⊢ ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) | |
| 176 | 175 | eqeq2i | ⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
| 177 | 176 | biimpi | ⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
| 178 | 177 | oveq2d | ⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 179 | 151 | recnd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 180 | 179 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 181 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℝ ) → 0 ∈ ℂ ) | |
| 182 | 61 179 | dvmptc | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ℝ ↦ ( 𝐹 ‘ 𝐴 ) ) ) = ( 𝑢 ∈ ℝ ↦ 0 ) ) |
| 183 | 61 180 181 182 50 55 56 58 | dvmptres2 | ⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 184 | 178 183 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ( ℝ D 𝐹 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 185 | 184 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ‘ 𝑥 ) ) |
| 186 | eqidd | ⊢ ( 𝑢 = 𝑥 → 0 = 0 ) | |
| 187 | eqid | ⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) | |
| 188 | c0ex | ⊢ 0 ∈ V | |
| 189 | 186 187 188 | fvmpt | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ‘ 𝑥 ) = 0 ) |
| 190 | 185 189 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 191 | 190 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 192 | r19.2z | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) | |
| 193 | 174 191 192 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 194 | 193 | ex | ⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 195 | 171 194 | sylbird | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 196 | 195 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 197 | 161 196 | sylbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 198 | 197 | impancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 199 | 146 198 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 200 | 27 130 199 | ecased | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 201 | 200 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 202 | 11 201 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 203 | 202 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 204 | 10 203 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |