This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rolle . (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rolle.a | |- ( ph -> A e. RR ) |
|
| rolle.b | |- ( ph -> B e. RR ) |
||
| rolle.lt | |- ( ph -> A < B ) |
||
| rolle.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| rolle.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| rolle.r | |- ( ph -> A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` U ) ) |
||
| rolle.u | |- ( ph -> U e. ( A [,] B ) ) |
||
| rolle.n | |- ( ph -> -. U e. { A , B } ) |
||
| Assertion | rollelem | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rolle.a | |- ( ph -> A e. RR ) |
|
| 2 | rolle.b | |- ( ph -> B e. RR ) |
|
| 3 | rolle.lt | |- ( ph -> A < B ) |
|
| 4 | rolle.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | rolle.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | rolle.r | |- ( ph -> A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` U ) ) |
|
| 7 | rolle.u | |- ( ph -> U e. ( A [,] B ) ) |
|
| 8 | rolle.n | |- ( ph -> -. U e. { A , B } ) |
|
| 9 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 10 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 11 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 12 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ph -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 14 | 7 13 | eleqtrrd | |- ( ph -> U e. ( ( A (,) B ) u. { A , B } ) ) |
| 15 | elun | |- ( U e. ( ( A (,) B ) u. { A , B } ) <-> ( U e. ( A (,) B ) \/ U e. { A , B } ) ) |
|
| 16 | 14 15 | sylib | |- ( ph -> ( U e. ( A (,) B ) \/ U e. { A , B } ) ) |
| 17 | 16 | ord | |- ( ph -> ( -. U e. ( A (,) B ) -> U e. { A , B } ) ) |
| 18 | 8 17 | mt3d | |- ( ph -> U e. ( A (,) B ) ) |
| 19 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 20 | 4 19 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 21 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 22 | 1 2 21 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 23 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 24 | 23 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 25 | 18 5 | eleqtrrd | |- ( ph -> U e. dom ( RR _D F ) ) |
| 26 | ssralv | |- ( ( A (,) B ) C_ ( A [,] B ) -> ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) ) |
|
| 27 | 24 6 26 | sylc | |- ( ph -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) |
| 28 | 20 22 18 24 25 27 | dvferm | |- ( ph -> ( ( RR _D F ) ` U ) = 0 ) |
| 29 | fveqeq2 | |- ( x = U -> ( ( ( RR _D F ) ` x ) = 0 <-> ( ( RR _D F ) ` U ) = 0 ) ) |
|
| 30 | 29 | rspcev | |- ( ( U e. ( A (,) B ) /\ ( ( RR _D F ) ` U ) = 0 ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
| 31 | 18 28 30 | syl2anc | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |