This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of functions is determined by their values. Special case of Exercise 4 of TakeutiZaring p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqfnfv | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
|
| 2 | dffn5 | |- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
|
| 3 | eqeq12 | |- ( ( F = ( x e. A |-> ( F ` x ) ) /\ G = ( x e. A |-> ( G ` x ) ) ) -> ( F = G <-> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) ) ) |
|
| 4 | 1 2 3 | syl2anb | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) ) ) |
| 5 | fvex | |- ( F ` x ) e. _V |
|
| 6 | 5 | rgenw | |- A. x e. A ( F ` x ) e. _V |
| 7 | mpteqb | |- ( A. x e. A ( F ` x ) e. _V -> ( ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 9 | 4 8 | bitrdi | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |