This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfss | |- ( ( B C_ C /\ C C_ CC ) -> ( A -cn-> B ) C_ ( A -cn-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff | |- ( f e. ( A -cn-> B ) -> f : A --> B ) |
|
| 2 | 1 | adantl | |- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f : A --> B ) |
| 3 | simpll | |- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> B C_ C ) |
|
| 4 | 2 3 | fssd | |- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f : A --> C ) |
| 5 | cncfcdm | |- ( ( C C_ CC /\ f e. ( A -cn-> B ) ) -> ( f e. ( A -cn-> C ) <-> f : A --> C ) ) |
|
| 6 | 5 | adantll | |- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> ( f e. ( A -cn-> C ) <-> f : A --> C ) ) |
| 7 | 4 6 | mpbird | |- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f e. ( A -cn-> C ) ) |
| 8 | 7 | ex | |- ( ( B C_ C /\ C C_ CC ) -> ( f e. ( A -cn-> B ) -> f e. ( A -cn-> C ) ) ) |
| 9 | 8 | ssrdv | |- ( ( B C_ C /\ C C_ CC ) -> ( A -cn-> B ) C_ ( A -cn-> C ) ) |