This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrfconj | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> ( ( G o. F ) o. `' G ) e. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | 1 2 | pmtrfb | |- ( F e. R <-> ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 4 | 3 | simp1bi | |- ( F e. R -> D e. _V ) |
| 5 | 4 | adantr | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> D e. _V ) |
| 6 | simpr | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> G : D -1-1-onto-> D ) |
|
| 7 | 1 2 | pmtrff1o | |- ( F e. R -> F : D -1-1-onto-> D ) |
| 8 | 7 | adantr | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> F : D -1-1-onto-> D ) |
| 9 | f1oco | |- ( ( G : D -1-1-onto-> D /\ F : D -1-1-onto-> D ) -> ( G o. F ) : D -1-1-onto-> D ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> ( G o. F ) : D -1-1-onto-> D ) |
| 11 | f1ocnv | |- ( G : D -1-1-onto-> D -> `' G : D -1-1-onto-> D ) |
|
| 12 | 11 | adantl | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> `' G : D -1-1-onto-> D ) |
| 13 | f1oco | |- ( ( ( G o. F ) : D -1-1-onto-> D /\ `' G : D -1-1-onto-> D ) -> ( ( G o. F ) o. `' G ) : D -1-1-onto-> D ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> ( ( G o. F ) o. `' G ) : D -1-1-onto-> D ) |
| 15 | f1of | |- ( F : D -1-1-onto-> D -> F : D --> D ) |
|
| 16 | 7 15 | syl | |- ( F e. R -> F : D --> D ) |
| 17 | 16 | adantr | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> F : D --> D ) |
| 18 | f1omvdconj | |- ( ( F : D --> D /\ G : D -1-1-onto-> D ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) = ( G " dom ( F \ _I ) ) ) |
|
| 19 | 17 6 18 | syl2anc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) = ( G " dom ( F \ _I ) ) ) |
| 20 | f1of1 | |- ( G : D -1-1-onto-> D -> G : D -1-1-> D ) |
|
| 21 | 20 | adantl | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> G : D -1-1-> D ) |
| 22 | difss | |- ( F \ _I ) C_ F |
|
| 23 | dmss | |- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
|
| 24 | 22 23 | ax-mp | |- dom ( F \ _I ) C_ dom F |
| 25 | 24 17 | fssdm | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( F \ _I ) C_ D ) |
| 26 | 5 25 | ssexd | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( F \ _I ) e. _V ) |
| 27 | f1imaeng | |- ( ( G : D -1-1-> D /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) e. _V ) -> ( G " dom ( F \ _I ) ) ~~ dom ( F \ _I ) ) |
|
| 28 | 21 25 26 27 | syl3anc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> ( G " dom ( F \ _I ) ) ~~ dom ( F \ _I ) ) |
| 29 | 19 28 | eqbrtrd | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) ~~ dom ( F \ _I ) ) |
| 30 | 3 | simp3bi | |- ( F e. R -> dom ( F \ _I ) ~~ 2o ) |
| 31 | 30 | adantr | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( F \ _I ) ~~ 2o ) |
| 32 | entr | |- ( ( dom ( ( ( G o. F ) o. `' G ) \ _I ) ~~ dom ( F \ _I ) /\ dom ( F \ _I ) ~~ 2o ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) ~~ 2o ) |
|
| 33 | 29 31 32 | syl2anc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) ~~ 2o ) |
| 34 | 1 2 | pmtrfb | |- ( ( ( G o. F ) o. `' G ) e. R <-> ( D e. _V /\ ( ( G o. F ) o. `' G ) : D -1-1-onto-> D /\ dom ( ( ( G o. F ) o. `' G ) \ _I ) ~~ 2o ) ) |
| 35 | 5 14 33 34 | syl3anbrc | |- ( ( F e. R /\ G : D -1-1-onto-> D ) -> ( ( G o. F ) o. `' G ) e. R ) |