This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdconj | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) = ( G " dom ( F \ _I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( ( ( G o. F ) o. `' G ) \ _I ) C_ ( ( G o. F ) o. `' G ) |
|
| 2 | dmss | |- ( ( ( ( G o. F ) o. `' G ) \ _I ) C_ ( ( G o. F ) o. `' G ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) C_ dom ( ( G o. F ) o. `' G ) ) |
|
| 3 | 1 2 | ax-mp | |- dom ( ( ( G o. F ) o. `' G ) \ _I ) C_ dom ( ( G o. F ) o. `' G ) |
| 4 | dmcoss | |- dom ( ( G o. F ) o. `' G ) C_ dom `' G |
|
| 5 | 3 4 | sstri | |- dom ( ( ( G o. F ) o. `' G ) \ _I ) C_ dom `' G |
| 6 | f1ocnv | |- ( G : A -1-1-onto-> A -> `' G : A -1-1-onto-> A ) |
|
| 7 | 6 | adantl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> `' G : A -1-1-onto-> A ) |
| 8 | f1odm | |- ( `' G : A -1-1-onto-> A -> dom `' G = A ) |
|
| 9 | 7 8 | syl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> dom `' G = A ) |
| 10 | 5 9 | sseqtrid | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) C_ A ) |
| 11 | 10 | sselda | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. dom ( ( ( G o. F ) o. `' G ) \ _I ) ) -> x e. A ) |
| 12 | imassrn | |- ( G " dom ( F \ _I ) ) C_ ran G |
|
| 13 | f1of | |- ( G : A -1-1-onto-> A -> G : A --> A ) |
|
| 14 | 13 | adantl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> G : A --> A ) |
| 15 | 14 | frnd | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> ran G C_ A ) |
| 16 | 12 15 | sstrid | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> ( G " dom ( F \ _I ) ) C_ A ) |
| 17 | 16 | sselda | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. ( G " dom ( F \ _I ) ) ) -> x e. A ) |
| 18 | simpl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> F : A --> A ) |
|
| 19 | fco | |- ( ( G : A --> A /\ F : A --> A ) -> ( G o. F ) : A --> A ) |
|
| 20 | 14 18 19 | syl2anc | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> ( G o. F ) : A --> A ) |
| 21 | f1of | |- ( `' G : A -1-1-onto-> A -> `' G : A --> A ) |
|
| 22 | 7 21 | syl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> `' G : A --> A ) |
| 23 | fco | |- ( ( ( G o. F ) : A --> A /\ `' G : A --> A ) -> ( ( G o. F ) o. `' G ) : A --> A ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> ( ( G o. F ) o. `' G ) : A --> A ) |
| 25 | 24 | ffnd | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> ( ( G o. F ) o. `' G ) Fn A ) |
| 26 | fnelnfp | |- ( ( ( ( G o. F ) o. `' G ) Fn A /\ x e. A ) -> ( x e. dom ( ( ( G o. F ) o. `' G ) \ _I ) <-> ( ( ( G o. F ) o. `' G ) ` x ) =/= x ) ) |
|
| 27 | 25 26 | sylan | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( x e. dom ( ( ( G o. F ) o. `' G ) \ _I ) <-> ( ( ( G o. F ) o. `' G ) ` x ) =/= x ) ) |
| 28 | f1ofn | |- ( `' G : A -1-1-onto-> A -> `' G Fn A ) |
|
| 29 | 7 28 | syl | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> `' G Fn A ) |
| 30 | fvco2 | |- ( ( `' G Fn A /\ x e. A ) -> ( ( ( G o. F ) o. `' G ) ` x ) = ( ( G o. F ) ` ( `' G ` x ) ) ) |
|
| 31 | 29 30 | sylan | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( ( G o. F ) o. `' G ) ` x ) = ( ( G o. F ) ` ( `' G ` x ) ) ) |
| 32 | ffn | |- ( F : A --> A -> F Fn A ) |
|
| 33 | 32 | ad2antrr | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> F Fn A ) |
| 34 | ffvelcdm | |- ( ( `' G : A --> A /\ x e. A ) -> ( `' G ` x ) e. A ) |
|
| 35 | 22 34 | sylan | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( `' G ` x ) e. A ) |
| 36 | fvco2 | |- ( ( F Fn A /\ ( `' G ` x ) e. A ) -> ( ( G o. F ) ` ( `' G ` x ) ) = ( G ` ( F ` ( `' G ` x ) ) ) ) |
|
| 37 | 33 35 36 | syl2anc | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( G o. F ) ` ( `' G ` x ) ) = ( G ` ( F ` ( `' G ` x ) ) ) ) |
| 38 | 31 37 | eqtrd | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( ( G o. F ) o. `' G ) ` x ) = ( G ` ( F ` ( `' G ` x ) ) ) ) |
| 39 | 38 | eqeq1d | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( ( ( G o. F ) o. `' G ) ` x ) = x <-> ( G ` ( F ` ( `' G ` x ) ) ) = x ) ) |
| 40 | simplr | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> G : A -1-1-onto-> A ) |
|
| 41 | simpll | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> F : A --> A ) |
|
| 42 | ffvelcdm | |- ( ( F : A --> A /\ ( `' G ` x ) e. A ) -> ( F ` ( `' G ` x ) ) e. A ) |
|
| 43 | 41 35 42 | syl2anc | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( F ` ( `' G ` x ) ) e. A ) |
| 44 | simpr | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> x e. A ) |
|
| 45 | f1ocnvfvb | |- ( ( G : A -1-1-onto-> A /\ ( F ` ( `' G ` x ) ) e. A /\ x e. A ) -> ( ( G ` ( F ` ( `' G ` x ) ) ) = x <-> ( `' G ` x ) = ( F ` ( `' G ` x ) ) ) ) |
|
| 46 | 40 43 44 45 | syl3anc | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( G ` ( F ` ( `' G ` x ) ) ) = x <-> ( `' G ` x ) = ( F ` ( `' G ` x ) ) ) ) |
| 47 | 39 46 | bitrd | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( ( ( G o. F ) o. `' G ) ` x ) = x <-> ( `' G ` x ) = ( F ` ( `' G ` x ) ) ) ) |
| 48 | 47 | necon3bid | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( ( ( G o. F ) o. `' G ) ` x ) =/= x <-> ( `' G ` x ) =/= ( F ` ( `' G ` x ) ) ) ) |
| 49 | necom | |- ( ( `' G ` x ) =/= ( F ` ( `' G ` x ) ) <-> ( F ` ( `' G ` x ) ) =/= ( `' G ` x ) ) |
|
| 50 | f1of1 | |- ( G : A -1-1-onto-> A -> G : A -1-1-> A ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> G : A -1-1-> A ) |
| 52 | difss | |- ( F \ _I ) C_ F |
|
| 53 | dmss | |- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
|
| 54 | 52 53 | ax-mp | |- dom ( F \ _I ) C_ dom F |
| 55 | fdm | |- ( F : A --> A -> dom F = A ) |
|
| 56 | 54 55 | sseqtrid | |- ( F : A --> A -> dom ( F \ _I ) C_ A ) |
| 57 | 56 | ad2antrr | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> dom ( F \ _I ) C_ A ) |
| 58 | f1elima | |- ( ( G : A -1-1-> A /\ ( `' G ` x ) e. A /\ dom ( F \ _I ) C_ A ) -> ( ( G ` ( `' G ` x ) ) e. ( G " dom ( F \ _I ) ) <-> ( `' G ` x ) e. dom ( F \ _I ) ) ) |
|
| 59 | 51 35 57 58 | syl3anc | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( G ` ( `' G ` x ) ) e. ( G " dom ( F \ _I ) ) <-> ( `' G ` x ) e. dom ( F \ _I ) ) ) |
| 60 | f1ocnvfv2 | |- ( ( G : A -1-1-onto-> A /\ x e. A ) -> ( G ` ( `' G ` x ) ) = x ) |
|
| 61 | 60 | adantll | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( G ` ( `' G ` x ) ) = x ) |
| 62 | 61 | eleq1d | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( G ` ( `' G ` x ) ) e. ( G " dom ( F \ _I ) ) <-> x e. ( G " dom ( F \ _I ) ) ) ) |
| 63 | fnelnfp | |- ( ( F Fn A /\ ( `' G ` x ) e. A ) -> ( ( `' G ` x ) e. dom ( F \ _I ) <-> ( F ` ( `' G ` x ) ) =/= ( `' G ` x ) ) ) |
|
| 64 | 33 35 63 | syl2anc | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( `' G ` x ) e. dom ( F \ _I ) <-> ( F ` ( `' G ` x ) ) =/= ( `' G ` x ) ) ) |
| 65 | 59 62 64 | 3bitr3rd | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( F ` ( `' G ` x ) ) =/= ( `' G ` x ) <-> x e. ( G " dom ( F \ _I ) ) ) ) |
| 66 | 49 65 | bitrid | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( ( `' G ` x ) =/= ( F ` ( `' G ` x ) ) <-> x e. ( G " dom ( F \ _I ) ) ) ) |
| 67 | 27 48 66 | 3bitrd | |- ( ( ( F : A --> A /\ G : A -1-1-onto-> A ) /\ x e. A ) -> ( x e. dom ( ( ( G o. F ) o. `' G ) \ _I ) <-> x e. ( G " dom ( F \ _I ) ) ) ) |
| 68 | 11 17 67 | eqrdav | |- ( ( F : A --> A /\ G : A -1-1-onto-> A ) -> dom ( ( ( G o. F ) o. `' G ) \ _I ) = ( G " dom ( F \ _I ) ) ) |