This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
||
| Assertion | rspc2ev | |- ( ( A e. C /\ B e. D /\ ps ) -> E. x e. C E. y e. D ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| 2 | rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
|
| 3 | 2 | rspcev | |- ( ( B e. D /\ ps ) -> E. y e. D ch ) |
| 4 | 3 | anim2i | |- ( ( A e. C /\ ( B e. D /\ ps ) ) -> ( A e. C /\ E. y e. D ch ) ) |
| 5 | 4 | 3impb | |- ( ( A e. C /\ B e. D /\ ps ) -> ( A e. C /\ E. y e. D ch ) ) |
| 6 | 1 | rexbidv | |- ( x = A -> ( E. y e. D ph <-> E. y e. D ch ) ) |
| 7 | 6 | rspcev | |- ( ( A e. C /\ E. y e. D ch ) -> E. x e. C E. y e. D ph ) |
| 8 | 5 7 | syl | |- ( ( A e. C /\ B e. D /\ ps ) -> E. x e. C E. y e. D ph ) |