This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrfcnv | |- ( F e. R -> `' F = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | eqid | |- dom ( F \ _I ) = dom ( F \ _I ) |
|
| 4 | 1 2 3 | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
| 5 | 4 | simpld | |- ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 6 | 1 | pmtrf | |- ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) : D --> D ) |
| 7 | 5 6 | syl | |- ( F e. R -> ( T ` dom ( F \ _I ) ) : D --> D ) |
| 8 | 4 | simprd | |- ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) |
| 9 | 8 | feq1d | |- ( F e. R -> ( F : D --> D <-> ( T ` dom ( F \ _I ) ) : D --> D ) ) |
| 10 | 7 9 | mpbird | |- ( F e. R -> F : D --> D ) |
| 11 | 1 2 | pmtrfinv | |- ( F e. R -> ( F o. F ) = ( _I |` D ) ) |
| 12 | 10 10 11 11 | 2fcoidinvd | |- ( F e. R -> `' F = F ) |