This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcoi1 | |- ( F : A --> B -> ( F o. ( _I |` A ) ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 3 | eqimss | |- ( dom F = A -> dom F C_ A ) |
|
| 4 | cnvi | |- `' _I = _I |
|
| 5 | 4 | reseq1i | |- ( `' _I |` A ) = ( _I |` A ) |
| 6 | 5 | cnveqi | |- `' ( `' _I |` A ) = `' ( _I |` A ) |
| 7 | cnvresid | |- `' ( _I |` A ) = ( _I |` A ) |
|
| 8 | 6 7 | eqtr2i | |- ( _I |` A ) = `' ( `' _I |` A ) |
| 9 | 8 | coeq2i | |- ( F o. ( _I |` A ) ) = ( F o. `' ( `' _I |` A ) ) |
| 10 | cores2 | |- ( dom F C_ A -> ( F o. `' ( `' _I |` A ) ) = ( F o. _I ) ) |
|
| 11 | 9 10 | eqtrid | |- ( dom F C_ A -> ( F o. ( _I |` A ) ) = ( F o. _I ) ) |
| 12 | 3 11 | syl | |- ( dom F = A -> ( F o. ( _I |` A ) ) = ( F o. _I ) ) |
| 13 | funrel | |- ( Fun F -> Rel F ) |
|
| 14 | coi1 | |- ( Rel F -> ( F o. _I ) = F ) |
|
| 15 | 13 14 | syl | |- ( Fun F -> ( F o. _I ) = F ) |
| 16 | 12 15 | sylan9eqr | |- ( ( Fun F /\ dom F = A ) -> ( F o. ( _I |` A ) ) = F ) |
| 17 | 2 16 | sylbi | |- ( F Fn A -> ( F o. ( _I |` A ) ) = F ) |
| 18 | 1 17 | syl | |- ( F : A --> B -> ( F o. ( _I |` A ) ) = F ) |