This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2eleq | |- ( ( X e. P /\ P ~~ 2o ) -> P = { X , U. ( P \ { X } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn | |- 2o e. _om |
|
| 2 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 3 | 1 2 | ax-mp | |- 2o e. Fin |
| 4 | enfi | |- ( P ~~ 2o -> ( P e. Fin <-> 2o e. Fin ) ) |
|
| 5 | 3 4 | mpbiri | |- ( P ~~ 2o -> P e. Fin ) |
| 6 | 5 | adantl | |- ( ( X e. P /\ P ~~ 2o ) -> P e. Fin ) |
| 7 | simpl | |- ( ( X e. P /\ P ~~ 2o ) -> X e. P ) |
|
| 8 | 1onn | |- 1o e. _om |
|
| 9 | simpr | |- ( ( X e. P /\ P ~~ 2o ) -> P ~~ 2o ) |
|
| 10 | df-2o | |- 2o = suc 1o |
|
| 11 | 9 10 | breqtrdi | |- ( ( X e. P /\ P ~~ 2o ) -> P ~~ suc 1o ) |
| 12 | dif1ennn | |- ( ( 1o e. _om /\ P ~~ suc 1o /\ X e. P ) -> ( P \ { X } ) ~~ 1o ) |
|
| 13 | 8 11 7 12 | mp3an2i | |- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { X } ) ~~ 1o ) |
| 14 | en1uniel | |- ( ( P \ { X } ) ~~ 1o -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
|
| 15 | 13 14 | syl | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
| 16 | eldifsn | |- ( U. ( P \ { X } ) e. ( P \ { X } ) <-> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
|
| 17 | 15 16 | sylib | |- ( ( X e. P /\ P ~~ 2o ) -> ( U. ( P \ { X } ) e. P /\ U. ( P \ { X } ) =/= X ) ) |
| 18 | 17 | simpld | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) e. P ) |
| 19 | 7 18 | prssd | |- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } C_ P ) |
| 20 | 17 | simprd | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) =/= X ) |
| 21 | 20 | necomd | |- ( ( X e. P /\ P ~~ 2o ) -> X =/= U. ( P \ { X } ) ) |
| 22 | enpr2 | |- ( ( X e. P /\ U. ( P \ { X } ) e. P /\ X =/= U. ( P \ { X } ) ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
|
| 23 | 7 18 21 22 | syl3anc | |- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ 2o ) |
| 24 | ensym | |- ( P ~~ 2o -> 2o ~~ P ) |
|
| 25 | 24 | adantl | |- ( ( X e. P /\ P ~~ 2o ) -> 2o ~~ P ) |
| 26 | entr | |- ( ( { X , U. ( P \ { X } ) } ~~ 2o /\ 2o ~~ P ) -> { X , U. ( P \ { X } ) } ~~ P ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } ~~ P ) |
| 28 | fisseneq | |- ( ( P e. Fin /\ { X , U. ( P \ { X } ) } C_ P /\ { X , U. ( P \ { X } ) } ~~ P ) -> { X , U. ( P \ { X } ) } = P ) |
|
| 29 | 6 19 27 28 | syl3anc | |- ( ( X e. P /\ P ~~ 2o ) -> { X , U. ( P \ { X } ) } = P ) |
| 30 | 29 | eqcomd | |- ( ( X e. P /\ P ~~ 2o ) -> P = { X , U. ( P \ { X } ) } ) |