This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrfb | |- ( F e. R <-> ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | eqid | |- dom ( F \ _I ) = dom ( F \ _I ) |
|
| 4 | 1 2 3 | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
| 5 | simpl1 | |- ( ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) -> D e. _V ) |
|
| 6 | 4 5 | syl | |- ( F e. R -> D e. _V ) |
| 7 | 1 2 | pmtrff1o | |- ( F e. R -> F : D -1-1-onto-> D ) |
| 8 | simpl3 | |- ( ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) -> dom ( F \ _I ) ~~ 2o ) |
|
| 9 | 4 8 | syl | |- ( F e. R -> dom ( F \ _I ) ~~ 2o ) |
| 10 | 6 7 9 | 3jca | |- ( F e. R -> ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 11 | simp2 | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> F : D -1-1-onto-> D ) |
|
| 12 | difss | |- ( F \ _I ) C_ F |
|
| 13 | dmss | |- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
|
| 14 | 12 13 | ax-mp | |- dom ( F \ _I ) C_ dom F |
| 15 | f1odm | |- ( F : D -1-1-onto-> D -> dom F = D ) |
|
| 16 | 14 15 | sseqtrid | |- ( F : D -1-1-onto-> D -> dom ( F \ _I ) C_ D ) |
| 17 | 1 2 | pmtrrn | |- ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) e. R ) |
| 18 | 16 17 | syl3an2 | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) e. R ) |
| 19 | 1 2 | pmtrff1o | |- ( ( T ` dom ( F \ _I ) ) e. R -> ( T ` dom ( F \ _I ) ) : D -1-1-onto-> D ) |
| 20 | 18 19 | syl | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) : D -1-1-onto-> D ) |
| 21 | simp3 | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> dom ( F \ _I ) ~~ 2o ) |
|
| 22 | 1 | pmtrmvd | |- ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> dom ( ( T ` dom ( F \ _I ) ) \ _I ) = dom ( F \ _I ) ) |
| 23 | 16 22 | syl3an2 | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> dom ( ( T ` dom ( F \ _I ) ) \ _I ) = dom ( F \ _I ) ) |
| 24 | f1otrspeq | |- ( ( ( F : D -1-1-onto-> D /\ ( T ` dom ( F \ _I ) ) : D -1-1-onto-> D ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( ( T ` dom ( F \ _I ) ) \ _I ) = dom ( F \ _I ) ) ) -> F = ( T ` dom ( F \ _I ) ) ) |
|
| 25 | 11 20 21 23 24 | syl22anc | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> F = ( T ` dom ( F \ _I ) ) ) |
| 26 | 25 18 | eqeltrd | |- ( ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) -> F e. R ) |
| 27 | 10 26 | impbii | |- ( F e. R <-> ( D e. _V /\ F : D -1-1-onto-> D /\ dom ( F \ _I ) ~~ 2o ) ) |