This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisseneq | |- ( ( B e. Fin /\ A C_ B /\ A ~~ B ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | |- ( A C. B <-> ( A C_ B /\ A =/= B ) ) |
|
| 2 | pssinf | |- ( ( A C. B /\ A ~~ B ) -> -. B e. Fin ) |
|
| 3 | 2 | expcom | |- ( A ~~ B -> ( A C. B -> -. B e. Fin ) ) |
| 4 | 1 3 | biimtrrid | |- ( A ~~ B -> ( ( A C_ B /\ A =/= B ) -> -. B e. Fin ) ) |
| 5 | 4 | expdimp | |- ( ( A ~~ B /\ A C_ B ) -> ( A =/= B -> -. B e. Fin ) ) |
| 6 | 5 | necon4ad | |- ( ( A ~~ B /\ A C_ B ) -> ( B e. Fin -> A = B ) ) |
| 7 | 6 | 3impia | |- ( ( A ~~ B /\ A C_ B /\ B e. Fin ) -> A = B ) |
| 8 | 7 | 3com13 | |- ( ( B e. Fin /\ A C_ B /\ A ~~ B ) -> A = B ) |