This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1otrspeq | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn | |- ( F : A -1-1-onto-> A -> F Fn A ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> F Fn A ) |
| 3 | f1ofn | |- ( G : A -1-1-onto-> A -> G Fn A ) |
|
| 4 | 3 | ad2antlr | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> G Fn A ) |
| 5 | 1onn | |- 1o e. _om |
|
| 6 | simplrr | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> dom ( G \ _I ) = dom ( F \ _I ) ) |
|
| 7 | simplrl | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> dom ( F \ _I ) ~~ 2o ) |
|
| 8 | df-2o | |- 2o = suc 1o |
|
| 9 | 7 8 | breqtrdi | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> dom ( F \ _I ) ~~ suc 1o ) |
| 10 | 6 9 | eqbrtrd | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> dom ( G \ _I ) ~~ suc 1o ) |
| 11 | simpr | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> x e. dom ( G \ _I ) ) |
|
| 12 | dif1ennn | |- ( ( 1o e. _om /\ dom ( G \ _I ) ~~ suc 1o /\ x e. dom ( G \ _I ) ) -> ( dom ( G \ _I ) \ { x } ) ~~ 1o ) |
|
| 13 | 5 10 11 12 | mp3an2i | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> ( dom ( G \ _I ) \ { x } ) ~~ 1o ) |
| 14 | euen1b | |- ( ( dom ( G \ _I ) \ { x } ) ~~ 1o <-> E! y y e. ( dom ( G \ _I ) \ { x } ) ) |
|
| 15 | eumo | |- ( E! y y e. ( dom ( G \ _I ) \ { x } ) -> E* y y e. ( dom ( G \ _I ) \ { x } ) ) |
|
| 16 | 14 15 | sylbi | |- ( ( dom ( G \ _I ) \ { x } ) ~~ 1o -> E* y y e. ( dom ( G \ _I ) \ { x } ) ) |
| 17 | 13 16 | syl | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> E* y y e. ( dom ( G \ _I ) \ { x } ) ) |
| 18 | f1omvdmvd | |- ( ( F : A -1-1-onto-> A /\ x e. dom ( F \ _I ) ) -> ( F ` x ) e. ( dom ( F \ _I ) \ { x } ) ) |
|
| 19 | 18 | ex | |- ( F : A -1-1-onto-> A -> ( x e. dom ( F \ _I ) -> ( F ` x ) e. ( dom ( F \ _I ) \ { x } ) ) ) |
| 20 | 19 | ad2antrr | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> ( x e. dom ( F \ _I ) -> ( F ` x ) e. ( dom ( F \ _I ) \ { x } ) ) ) |
| 21 | eleq2 | |- ( dom ( G \ _I ) = dom ( F \ _I ) -> ( x e. dom ( G \ _I ) <-> x e. dom ( F \ _I ) ) ) |
|
| 22 | 21 | ad2antll | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> ( x e. dom ( G \ _I ) <-> x e. dom ( F \ _I ) ) ) |
| 23 | difeq1 | |- ( dom ( G \ _I ) = dom ( F \ _I ) -> ( dom ( G \ _I ) \ { x } ) = ( dom ( F \ _I ) \ { x } ) ) |
|
| 24 | 23 | eleq2d | |- ( dom ( G \ _I ) = dom ( F \ _I ) -> ( ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) <-> ( F ` x ) e. ( dom ( F \ _I ) \ { x } ) ) ) |
| 25 | 24 | ad2antll | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> ( ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) <-> ( F ` x ) e. ( dom ( F \ _I ) \ { x } ) ) ) |
| 26 | 20 22 25 | 3imtr4d | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> ( x e. dom ( G \ _I ) -> ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) ) ) |
| 27 | 26 | imp | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) ) |
| 28 | f1omvdmvd | |- ( ( G : A -1-1-onto-> A /\ x e. dom ( G \ _I ) ) -> ( G ` x ) e. ( dom ( G \ _I ) \ { x } ) ) |
|
| 29 | 28 | ad4ant24 | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> ( G ` x ) e. ( dom ( G \ _I ) \ { x } ) ) |
| 30 | fvex | |- ( F ` x ) e. _V |
|
| 31 | fvex | |- ( G ` x ) e. _V |
|
| 32 | 30 31 | pm3.2i | |- ( ( F ` x ) e. _V /\ ( G ` x ) e. _V ) |
| 33 | eleq1 | |- ( y = ( F ` x ) -> ( y e. ( dom ( G \ _I ) \ { x } ) <-> ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) ) ) |
|
| 34 | eleq1 | |- ( y = ( G ` x ) -> ( y e. ( dom ( G \ _I ) \ { x } ) <-> ( G ` x ) e. ( dom ( G \ _I ) \ { x } ) ) ) |
|
| 35 | 33 34 | moi | |- ( ( ( ( F ` x ) e. _V /\ ( G ` x ) e. _V ) /\ E* y y e. ( dom ( G \ _I ) \ { x } ) /\ ( ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) /\ ( G ` x ) e. ( dom ( G \ _I ) \ { x } ) ) ) -> ( F ` x ) = ( G ` x ) ) |
| 36 | 32 35 | mp3an1 | |- ( ( E* y y e. ( dom ( G \ _I ) \ { x } ) /\ ( ( F ` x ) e. ( dom ( G \ _I ) \ { x } ) /\ ( G ` x ) e. ( dom ( G \ _I ) \ { x } ) ) ) -> ( F ` x ) = ( G ` x ) ) |
| 37 | 17 27 29 36 | syl12anc | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. dom ( G \ _I ) ) -> ( F ` x ) = ( G ` x ) ) |
| 38 | 37 | adantlr | |- ( ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) /\ x e. dom ( G \ _I ) ) -> ( F ` x ) = ( G ` x ) ) |
| 39 | simplrr | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> dom ( G \ _I ) = dom ( F \ _I ) ) |
|
| 40 | 39 | eleq2d | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( x e. dom ( G \ _I ) <-> x e. dom ( F \ _I ) ) ) |
| 41 | fnelnfp | |- ( ( F Fn A /\ x e. A ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) |
|
| 42 | 2 41 | sylan | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) |
| 43 | 40 42 | bitrd | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( x e. dom ( G \ _I ) <-> ( F ` x ) =/= x ) ) |
| 44 | 43 | necon2bbid | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( ( F ` x ) = x <-> -. x e. dom ( G \ _I ) ) ) |
| 45 | 44 | biimpar | |- ( ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) /\ -. x e. dom ( G \ _I ) ) -> ( F ` x ) = x ) |
| 46 | fnelnfp | |- ( ( G Fn A /\ x e. A ) -> ( x e. dom ( G \ _I ) <-> ( G ` x ) =/= x ) ) |
|
| 47 | 4 46 | sylan | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( x e. dom ( G \ _I ) <-> ( G ` x ) =/= x ) ) |
| 48 | 47 | necon2bbid | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( ( G ` x ) = x <-> -. x e. dom ( G \ _I ) ) ) |
| 49 | 48 | biimpar | |- ( ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) /\ -. x e. dom ( G \ _I ) ) -> ( G ` x ) = x ) |
| 50 | 45 49 | eqtr4d | |- ( ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) /\ -. x e. dom ( G \ _I ) ) -> ( F ` x ) = ( G ` x ) ) |
| 51 | 38 50 | pm2.61dan | |- ( ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 52 | 2 4 51 | eqfnfvd | |- ( ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A ) /\ ( dom ( F \ _I ) ~~ 2o /\ dom ( G \ _I ) = dom ( F \ _I ) ) ) -> F = G ) |