This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrfinv | |- ( F e. R -> ( F o. F ) = ( _I |` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | eqid | |- dom ( F \ _I ) = dom ( F \ _I ) |
|
| 4 | 1 2 3 | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
| 5 | 4 | simpld | |- ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) |
| 6 | 1 | pmtrf | |- ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) : D --> D ) |
| 7 | 5 6 | syl | |- ( F e. R -> ( T ` dom ( F \ _I ) ) : D --> D ) |
| 8 | 4 | simprd | |- ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) |
| 9 | 8 | feq1d | |- ( F e. R -> ( F : D --> D <-> ( T ` dom ( F \ _I ) ) : D --> D ) ) |
| 10 | 7 9 | mpbird | |- ( F e. R -> F : D --> D ) |
| 11 | fco | |- ( ( F : D --> D /\ F : D --> D ) -> ( F o. F ) : D --> D ) |
|
| 12 | 11 | anidms | |- ( F : D --> D -> ( F o. F ) : D --> D ) |
| 13 | ffn | |- ( ( F o. F ) : D --> D -> ( F o. F ) Fn D ) |
|
| 14 | 10 12 13 | 3syl | |- ( F e. R -> ( F o. F ) Fn D ) |
| 15 | fnresi | |- ( _I |` D ) Fn D |
|
| 16 | 15 | a1i | |- ( F e. R -> ( _I |` D ) Fn D ) |
| 17 | 1 2 3 | pmtrffv | |- ( ( F e. R /\ x e. D ) -> ( F ` x ) = if ( x e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { x } ) , x ) ) |
| 18 | iftrue | |- ( x e. dom ( F \ _I ) -> if ( x e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { x } ) , x ) = U. ( dom ( F \ _I ) \ { x } ) ) |
|
| 19 | 17 18 | sylan9eq | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( F ` x ) = U. ( dom ( F \ _I ) \ { x } ) ) |
| 20 | 19 | fveq2d | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( F ` ( F ` x ) ) = ( F ` U. ( dom ( F \ _I ) \ { x } ) ) ) |
| 21 | simpll | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> F e. R ) |
|
| 22 | 5 | simp2d | |- ( F e. R -> dom ( F \ _I ) C_ D ) |
| 23 | 22 | ad2antrr | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> dom ( F \ _I ) C_ D ) |
| 24 | 1onn | |- 1o e. _om |
|
| 25 | 5 | simp3d | |- ( F e. R -> dom ( F \ _I ) ~~ 2o ) |
| 26 | df-2o | |- 2o = suc 1o |
|
| 27 | 25 26 | breqtrdi | |- ( F e. R -> dom ( F \ _I ) ~~ suc 1o ) |
| 28 | 27 | ad2antrr | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> dom ( F \ _I ) ~~ suc 1o ) |
| 29 | simpr | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> x e. dom ( F \ _I ) ) |
|
| 30 | dif1ennn | |- ( ( 1o e. _om /\ dom ( F \ _I ) ~~ suc 1o /\ x e. dom ( F \ _I ) ) -> ( dom ( F \ _I ) \ { x } ) ~~ 1o ) |
|
| 31 | 24 28 29 30 | mp3an2i | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( dom ( F \ _I ) \ { x } ) ~~ 1o ) |
| 32 | en1uniel | |- ( ( dom ( F \ _I ) \ { x } ) ~~ 1o -> U. ( dom ( F \ _I ) \ { x } ) e. ( dom ( F \ _I ) \ { x } ) ) |
|
| 33 | 31 32 | syl | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> U. ( dom ( F \ _I ) \ { x } ) e. ( dom ( F \ _I ) \ { x } ) ) |
| 34 | 33 | eldifad | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) ) |
| 35 | 23 34 | sseldd | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> U. ( dom ( F \ _I ) \ { x } ) e. D ) |
| 36 | 1 2 3 | pmtrffv | |- ( ( F e. R /\ U. ( dom ( F \ _I ) \ { x } ) e. D ) -> ( F ` U. ( dom ( F \ _I ) \ { x } ) ) = if ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) , U. ( dom ( F \ _I ) \ { x } ) ) ) |
| 37 | 21 35 36 | syl2anc | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( F ` U. ( dom ( F \ _I ) \ { x } ) ) = if ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) , U. ( dom ( F \ _I ) \ { x } ) ) ) |
| 38 | iftrue | |- ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) -> if ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) , U. ( dom ( F \ _I ) \ { x } ) ) = U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) ) |
|
| 39 | 34 38 | syl | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> if ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) , U. ( dom ( F \ _I ) \ { x } ) ) = U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) ) |
| 40 | 25 | adantr | |- ( ( F e. R /\ x e. D ) -> dom ( F \ _I ) ~~ 2o ) |
| 41 | en2other2 | |- ( ( x e. dom ( F \ _I ) /\ dom ( F \ _I ) ~~ 2o ) -> U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) = x ) |
|
| 42 | 41 | ancoms | |- ( ( dom ( F \ _I ) ~~ 2o /\ x e. dom ( F \ _I ) ) -> U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) = x ) |
| 43 | 40 42 | sylan | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) = x ) |
| 44 | 39 43 | eqtrd | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> if ( U. ( dom ( F \ _I ) \ { x } ) e. dom ( F \ _I ) , U. ( dom ( F \ _I ) \ { U. ( dom ( F \ _I ) \ { x } ) } ) , U. ( dom ( F \ _I ) \ { x } ) ) = x ) |
| 45 | 37 44 | eqtrd | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( F ` U. ( dom ( F \ _I ) \ { x } ) ) = x ) |
| 46 | 20 45 | eqtrd | |- ( ( ( F e. R /\ x e. D ) /\ x e. dom ( F \ _I ) ) -> ( F ` ( F ` x ) ) = x ) |
| 47 | 10 | ffnd | |- ( F e. R -> F Fn D ) |
| 48 | fnelnfp | |- ( ( F Fn D /\ x e. D ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) |
|
| 49 | 47 48 | sylan | |- ( ( F e. R /\ x e. D ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) |
| 50 | 49 | necon2bbid | |- ( ( F e. R /\ x e. D ) -> ( ( F ` x ) = x <-> -. x e. dom ( F \ _I ) ) ) |
| 51 | 50 | biimpar | |- ( ( ( F e. R /\ x e. D ) /\ -. x e. dom ( F \ _I ) ) -> ( F ` x ) = x ) |
| 52 | fveq2 | |- ( ( F ` x ) = x -> ( F ` ( F ` x ) ) = ( F ` x ) ) |
|
| 53 | id | |- ( ( F ` x ) = x -> ( F ` x ) = x ) |
|
| 54 | 52 53 | eqtrd | |- ( ( F ` x ) = x -> ( F ` ( F ` x ) ) = x ) |
| 55 | 51 54 | syl | |- ( ( ( F e. R /\ x e. D ) /\ -. x e. dom ( F \ _I ) ) -> ( F ` ( F ` x ) ) = x ) |
| 56 | 46 55 | pm2.61dan | |- ( ( F e. R /\ x e. D ) -> ( F ` ( F ` x ) ) = x ) |
| 57 | fvco2 | |- ( ( F Fn D /\ x e. D ) -> ( ( F o. F ) ` x ) = ( F ` ( F ` x ) ) ) |
|
| 58 | 47 57 | sylan | |- ( ( F e. R /\ x e. D ) -> ( ( F o. F ) ` x ) = ( F ` ( F ` x ) ) ) |
| 59 | fvresi | |- ( x e. D -> ( ( _I |` D ) ` x ) = x ) |
|
| 60 | 59 | adantl | |- ( ( F e. R /\ x e. D ) -> ( ( _I |` D ) ` x ) = x ) |
| 61 | 56 58 60 | 3eqtr4d | |- ( ( F e. R /\ x e. D ) -> ( ( F o. F ) ` x ) = ( ( _I |` D ) ` x ) ) |
| 62 | 14 16 61 | eqfnfvd | |- ( F e. R -> ( F o. F ) = ( _I |` D ) ) |