This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnnn0addcl | |- ( ( M e. NN /\ N e. NN0 ) -> ( M + N ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | nnaddcl | |- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
|
| 3 | oveq2 | |- ( N = 0 -> ( M + N ) = ( M + 0 ) ) |
|
| 4 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 5 | 4 | addridd | |- ( M e. NN -> ( M + 0 ) = M ) |
| 6 | 3 5 | sylan9eqr | |- ( ( M e. NN /\ N = 0 ) -> ( M + N ) = M ) |
| 7 | simpl | |- ( ( M e. NN /\ N = 0 ) -> M e. NN ) |
|
| 8 | 6 7 | eqeltrd | |- ( ( M e. NN /\ N = 0 ) -> ( M + N ) e. NN ) |
| 9 | 2 8 | jaodan | |- ( ( M e. NN /\ ( N e. NN \/ N = 0 ) ) -> ( M + N ) e. NN ) |
| 10 | 1 9 | sylan2b | |- ( ( M e. NN /\ N e. NN0 ) -> ( M + N ) e. NN ) |