This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolfioo | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 2 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 3 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 4 | 2 3 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 5 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 6 | 4 5 | mpan2 | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 7 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 8 | 1 6 7 | sylancr | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 9 | ffn | |- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
|
| 10 | fniunfv | |- ( ( (,) o. F ) Fn NN -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
|
| 11 | 8 9 10 | 3syl | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
| 12 | 11 | sseq2d | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 13 | 12 | adantl | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A C_ U. ran ( (,) o. F ) ) ) |
| 14 | dfss3 | |- ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A z e. U_ n e. NN ( ( (,) o. F ) ` n ) ) |
|
| 15 | ssel2 | |- ( ( A C_ RR /\ z e. A ) -> z e. RR ) |
|
| 16 | eliun | |- ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN z e. ( ( (,) o. F ) ` n ) ) |
|
| 17 | rexr | |- ( z e. RR -> z e. RR* ) |
|
| 18 | 17 | ad2antrr | |- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> z e. RR* ) |
| 19 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
|
| 20 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 21 | 20 | elin2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) |
| 22 | 1st2nd2 | |- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 23 | 21 22 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 24 | 23 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 25 | df-ov | |- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 26 | 24 25 | eqtr4di | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 27 | 19 26 | eqtrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 28 | 27 | eleq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
| 29 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
|
| 30 | rexr | |- ( ( 1st ` ( F ` n ) ) e. RR -> ( 1st ` ( F ` n ) ) e. RR* ) |
|
| 31 | rexr | |- ( ( 2nd ` ( F ` n ) ) e. RR -> ( 2nd ` ( F ` n ) ) e. RR* ) |
|
| 32 | elioo1 | |- ( ( ( 1st ` ( F ` n ) ) e. RR* /\ ( 2nd ` ( F ` n ) ) e. RR* ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
|
| 33 | 30 31 32 | syl2an | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 34 | 3anass | |- ( ( z e. RR* /\ ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
|
| 35 | 33 34 | bitrdi | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 36 | 35 | 3adant3 | |- ( ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 37 | 29 36 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 38 | 28 37 | bitrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 39 | 38 | adantll | |- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( z e. RR* /\ ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 40 | 18 39 | mpbirand | |- ( ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ n e. NN ) -> ( z e. ( ( (,) o. F ) ` n ) <-> ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 41 | 40 | rexbidva | |- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( E. n e. NN z e. ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 42 | 16 41 | bitrid | |- ( ( z e. RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 43 | 15 42 | sylan | |- ( ( ( A C_ RR /\ z e. A ) /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 44 | 43 | an32s | |- ( ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) /\ z e. A ) -> ( z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 45 | 44 | ralbidva | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A. z e. A z e. U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 46 | 14 45 | bitrid | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U_ n e. NN ( ( (,) o. F ) ` n ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |
| 47 | 13 46 | bitr3d | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. F ) <-> A. z e. A E. n e. NN ( ( 1st ` ( F ` n ) ) < z /\ z < ( 2nd ` ( F ` n ) ) ) ) ) |