This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrbnd | |- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr | |- RR C_ RR* |
|
| 2 | sstr | |- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
|
| 3 | 1 2 | mpan2 | |- ( A C_ RR -> A C_ RR* ) |
| 4 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 5 | pnfxr | |- +oo e. RR* |
|
| 6 | xrltne | |- ( ( sup ( A , RR* , < ) e. RR* /\ +oo e. RR* /\ sup ( A , RR* , < ) < +oo ) -> +oo =/= sup ( A , RR* , < ) ) |
|
| 7 | 5 6 | mp3an2 | |- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( A , RR* , < ) < +oo ) -> +oo =/= sup ( A , RR* , < ) ) |
| 8 | 7 | necomd | |- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) =/= +oo ) |
| 9 | 8 | ex | |- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) =/= +oo ) ) |
| 10 | 4 9 | syl | |- ( A C_ RR* -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) =/= +oo ) ) |
| 11 | supxrunb2 | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> sup ( A , RR* , < ) = +oo ) ) |
|
| 12 | ssel2 | |- ( ( A C_ RR* /\ y e. A ) -> y e. RR* ) |
|
| 13 | 12 | adantlr | |- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> y e. RR* ) |
| 14 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> x e. RR* ) |
| 16 | xrlenlt | |- ( ( y e. RR* /\ x e. RR* ) -> ( y <_ x <-> -. x < y ) ) |
|
| 17 | 16 | con2bid | |- ( ( y e. RR* /\ x e. RR* ) -> ( x < y <-> -. y <_ x ) ) |
| 18 | 13 15 17 | syl2anc | |- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> ( x < y <-> -. y <_ x ) ) |
| 19 | 18 | rexbidva | |- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x < y <-> E. y e. A -. y <_ x ) ) |
| 20 | rexnal | |- ( E. y e. A -. y <_ x <-> -. A. y e. A y <_ x ) |
|
| 21 | 19 20 | bitrdi | |- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x < y <-> -. A. y e. A y <_ x ) ) |
| 22 | 21 | ralbidva | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> A. x e. RR -. A. y e. A y <_ x ) ) |
| 23 | 11 22 | bitr3d | |- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo <-> A. x e. RR -. A. y e. A y <_ x ) ) |
| 24 | ralnex | |- ( A. x e. RR -. A. y e. A y <_ x <-> -. E. x e. RR A. y e. A y <_ x ) |
|
| 25 | 23 24 | bitrdi | |- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo <-> -. E. x e. RR A. y e. A y <_ x ) ) |
| 26 | 25 | necon2abid | |- ( A C_ RR* -> ( E. x e. RR A. y e. A y <_ x <-> sup ( A , RR* , < ) =/= +oo ) ) |
| 27 | 10 26 | sylibrd | |- ( A C_ RR* -> ( sup ( A , RR* , < ) < +oo -> E. x e. RR A. y e. A y <_ x ) ) |
| 28 | 27 | imp | |- ( ( A C_ RR* /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
| 29 | 3 28 | sylan | |- ( ( A C_ RR /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
| 30 | 29 | 3adant2 | |- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
| 31 | supxrre | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR* , < ) = sup ( A , RR , < ) ) |
|
| 32 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 33 | 31 32 | eqeltrd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR* , < ) e. RR ) |
| 34 | 30 33 | syld3an3 | |- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) e. RR ) |