This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghminv.b | |- B = ( Base ` S ) |
|
| ghminv.y | |- M = ( invg ` S ) |
||
| ghminv.z | |- N = ( invg ` T ) |
||
| Assertion | ghminv | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( M ` X ) ) = ( N ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghminv.b | |- B = ( Base ` S ) |
|
| 2 | ghminv.y | |- M = ( invg ` S ) |
|
| 3 | ghminv.z | |- N = ( invg ` T ) |
|
| 4 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 5 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 6 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 7 | 1 5 6 2 | grprinv | |- ( ( S e. Grp /\ X e. B ) -> ( X ( +g ` S ) ( M ` X ) ) = ( 0g ` S ) ) |
| 8 | 4 7 | sylan | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( X ( +g ` S ) ( M ` X ) ) = ( 0g ` S ) ) |
| 9 | 8 | fveq2d | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( F ` ( 0g ` S ) ) ) |
| 10 | 1 2 | grpinvcl | |- ( ( S e. Grp /\ X e. B ) -> ( M ` X ) e. B ) |
| 11 | 4 10 | sylan | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( M ` X ) e. B ) |
| 12 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 13 | 1 5 12 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ X e. B /\ ( M ` X ) e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) ) |
| 14 | 11 13 | mpd3an3 | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) ) |
| 15 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 16 | 6 15 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 17 | 16 | adantr | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 18 | 9 14 17 | 3eqtr3d | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) |
| 19 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 20 | 19 | adantr | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> T e. Grp ) |
| 21 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 22 | 1 21 | ghmf | |- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
| 23 | 22 | ffvelcdmda | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` X ) e. ( Base ` T ) ) |
| 24 | 22 | adantr | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> F : B --> ( Base ` T ) ) |
| 25 | 24 11 | ffvelcdmd | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( M ` X ) ) e. ( Base ` T ) ) |
| 26 | 21 12 15 3 | grpinvid1 | |- ( ( T e. Grp /\ ( F ` X ) e. ( Base ` T ) /\ ( F ` ( M ` X ) ) e. ( Base ` T ) ) -> ( ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) <-> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) ) |
| 27 | 20 23 25 26 | syl3anc | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) <-> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) ) |
| 28 | 18 27 | mpbird | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) ) |
| 29 | 28 | eqcomd | |- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( M ` X ) ) = ( N ` ( F ` X ) ) ) |