This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe4.p | |- P = ( I mPoly R ) |
|
| mplcoe4.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplcoe4.z | |- .0. = ( 0g ` R ) |
||
| mplcoe4.b | |- B = ( Base ` P ) |
||
| mplcoe4.i | |- ( ph -> I e. W ) |
||
| mplcoe4.r | |- ( ph -> R e. Ring ) |
||
| mplcoe4.x | |- ( ph -> X e. B ) |
||
| Assertion | mplcoe4 | |- ( ph -> X = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe4.p | |- P = ( I mPoly R ) |
|
| 2 | mplcoe4.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mplcoe4.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplcoe4.b | |- B = ( Base ` P ) |
|
| 5 | mplcoe4.i | |- ( ph -> I e. W ) |
|
| 6 | mplcoe4.r | |- ( ph -> R e. Ring ) |
|
| 7 | mplcoe4.x | |- ( ph -> X e. B ) |
|
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 10 | 1 2 3 8 5 4 9 6 7 | mplcoe1 | |- ( ph -> X = ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) ) |
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | 5 | adantr | |- ( ( ph /\ k e. D ) -> I e. W ) |
| 13 | 6 | adantr | |- ( ( ph /\ k e. D ) -> R e. Ring ) |
| 14 | simpr | |- ( ( ph /\ k e. D ) -> k e. D ) |
|
| 15 | 1 11 4 2 7 | mplelf | |- ( ph -> X : D --> ( Base ` R ) ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ k e. D ) -> ( X ` k ) e. ( Base ` R ) ) |
| 17 | 1 9 2 8 3 11 12 13 14 16 | mplmon2 | |- ( ( ph /\ k e. D ) -> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) |
| 18 | 17 | mpteq2dva | |- ( ph -> ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) = ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) |
| 19 | 18 | oveq2d | |- ( ph -> ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |
| 20 | 10 19 | eqtrd | |- ( ph -> X = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |