This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 2 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 3 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 4 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 5 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 6 | 1 2 3 4 5 | isassa | |- ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring ) /\ A. z e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( z ( .s ` W ) x ) ( .r ` W ) y ) = ( z ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( z ( .s ` W ) y ) ) = ( z ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 7 | 6 | simplbi | |- ( W e. AssAlg -> ( W e. LMod /\ W e. Ring ) ) |
| 8 | 7 | simpld | |- ( W e. AssAlg -> W e. LMod ) |