This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | xrltnr | |- ( +oo e. RR* -> -. +oo < +oo ) |
|
| 3 | 1 2 | ax-mp | |- -. +oo < +oo |
| 4 | breq1 | |- ( A = +oo -> ( A < +oo <-> +oo < +oo ) ) |
|
| 5 | 3 4 | mtbiri | |- ( A = +oo -> -. A < +oo ) |
| 6 | pnfge | |- ( A e. RR* -> A <_ +oo ) |
|
| 7 | xrleloe | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) ) |
|
| 8 | 1 7 | mpan2 | |- ( A e. RR* -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) ) |
| 9 | 6 8 | mpbid | |- ( A e. RR* -> ( A < +oo \/ A = +oo ) ) |
| 10 | 9 | ord | |- ( A e. RR* -> ( -. A < +oo -> A = +oo ) ) |
| 11 | 5 10 | impbid2 | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |