This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subject to the conditions coming from mbfi1fseq , the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
||
| itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
||
| itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
||
| Assertion | itg2i1fseq | |- ( ph -> ( S.2 ` F ) = sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 4 | itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
|
| 5 | itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 6 | itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
|
| 7 | fveq2 | |- ( n = m -> ( P ` n ) = ( P ` m ) ) |
|
| 8 | 7 | fveq1d | |- ( n = m -> ( ( P ` n ) ` x ) = ( ( P ` m ) ` x ) ) |
| 9 | 8 | cbvmptv | |- ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( m e. NN |-> ( ( P ` m ) ` x ) ) |
| 10 | fveq2 | |- ( x = y -> ( ( P ` m ) ` x ) = ( ( P ` m ) ` y ) ) |
|
| 11 | 10 | mpteq2dv | |- ( x = y -> ( m e. NN |-> ( ( P ` m ) ` x ) ) = ( m e. NN |-> ( ( P ` m ) ` y ) ) ) |
| 12 | 9 11 | eqtrid | |- ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( m e. NN |-> ( ( P ` m ) ` y ) ) ) |
| 13 | 12 | rneqd | |- ( x = y -> ran ( n e. NN |-> ( ( P ` n ) ` x ) ) = ran ( m e. NN |-> ( ( P ` m ) ` y ) ) ) |
| 14 | 13 | supeq1d | |- ( x = y -> sup ( ran ( n e. NN |-> ( ( P ` n ) ` x ) ) , RR , < ) = sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) ) |
| 15 | 14 | cbvmptv | |- ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( P ` n ) ` x ) ) , RR , < ) ) = ( y e. RR |-> sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) ) |
| 16 | 3 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) |
| 17 | i1fmbf | |- ( ( P ` m ) e. dom S.1 -> ( P ` m ) e. MblFn ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ m e. NN ) -> ( P ` m ) e. MblFn ) |
| 19 | i1ff | |- ( ( P ` m ) e. dom S.1 -> ( P ` m ) : RR --> RR ) |
|
| 20 | 16 19 | syl | |- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> RR ) |
| 21 | 7 | breq2d | |- ( n = m -> ( 0p oR <_ ( P ` n ) <-> 0p oR <_ ( P ` m ) ) ) |
| 22 | fvoveq1 | |- ( n = m -> ( P ` ( n + 1 ) ) = ( P ` ( m + 1 ) ) ) |
|
| 23 | 7 22 | breq12d | |- ( n = m -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 24 | 21 23 | anbi12d | |- ( n = m -> ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) ) |
| 25 | 24 | rspccva | |- ( ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 26 | 4 25 | sylan | |- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 27 | 26 | simpld | |- ( ( ph /\ m e. NN ) -> 0p oR <_ ( P ` m ) ) |
| 28 | 0plef | |- ( ( P ` m ) : RR --> ( 0 [,) +oo ) <-> ( ( P ` m ) : RR --> RR /\ 0p oR <_ ( P ` m ) ) ) |
|
| 29 | 20 27 28 | sylanbrc | |- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) |
| 30 | 26 | simprd | |- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) |
| 31 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 32 | 2 | ffvelcdmda | |- ( ( ph /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 33 | 31 32 | sselid | |- ( ( ph /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 34 | 1 2 3 4 5 | itg2i1fseqle | |- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ F ) |
| 35 | 20 | ffnd | |- ( ( ph /\ m e. NN ) -> ( P ` m ) Fn RR ) |
| 36 | 2 | ffnd | |- ( ph -> F Fn RR ) |
| 37 | 36 | adantr | |- ( ( ph /\ m e. NN ) -> F Fn RR ) |
| 38 | reex | |- RR e. _V |
|
| 39 | 38 | a1i | |- ( ( ph /\ m e. NN ) -> RR e. _V ) |
| 40 | inidm | |- ( RR i^i RR ) = RR |
|
| 41 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) = ( ( P ` m ) ` y ) ) |
|
| 42 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 43 | 35 37 39 39 40 41 42 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oR <_ F <-> A. y e. RR ( ( P ` m ) ` y ) <_ ( F ` y ) ) ) |
| 44 | 34 43 | mpbid | |- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( P ` m ) ` y ) <_ ( F ` y ) ) |
| 45 | 44 | r19.21bi | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) <_ ( F ` y ) ) |
| 46 | 45 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) <_ ( F ` y ) ) |
| 47 | 46 | ralrimiva | |- ( ( ph /\ y e. RR ) -> A. m e. NN ( ( P ` m ) ` y ) <_ ( F ` y ) ) |
| 48 | brralrspcev | |- ( ( ( F ` y ) e. RR /\ A. m e. NN ( ( P ` m ) ` y ) <_ ( F ` y ) ) -> E. z e. RR A. m e. NN ( ( P ` m ) ` y ) <_ z ) |
|
| 49 | 33 47 48 | syl2anc | |- ( ( ph /\ y e. RR ) -> E. z e. RR A. m e. NN ( ( P ` m ) ` y ) <_ z ) |
| 50 | 7 | fveq2d | |- ( n = m -> ( S.2 ` ( P ` n ) ) = ( S.2 ` ( P ` m ) ) ) |
| 51 | 50 | cbvmptv | |- ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) = ( m e. NN |-> ( S.2 ` ( P ` m ) ) ) |
| 52 | 51 | rneqi | |- ran ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) = ran ( m e. NN |-> ( S.2 ` ( P ` m ) ) ) |
| 53 | 52 | supeq1i | |- sup ( ran ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) , RR* , < ) = sup ( ran ( m e. NN |-> ( S.2 ` ( P ` m ) ) ) , RR* , < ) |
| 54 | 15 18 29 30 49 53 | itg2mono | |- ( ph -> ( S.2 ` ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( P ` n ) ` x ) ) , RR , < ) ) ) = sup ( ran ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) , RR* , < ) ) |
| 55 | 2 | feqmptd | |- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 56 | 7 | fveq1d | |- ( n = m -> ( ( P ` n ) ` y ) = ( ( P ` m ) ` y ) ) |
| 57 | 56 | cbvmptv | |- ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( m e. NN |-> ( ( P ` m ) ` y ) ) |
| 58 | 57 | rneqi | |- ran ( n e. NN |-> ( ( P ` n ) ` y ) ) = ran ( m e. NN |-> ( ( P ` m ) ` y ) ) |
| 59 | 58 | supeq1i | |- sup ( ran ( n e. NN |-> ( ( P ` n ) ` y ) ) , RR , < ) = sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) |
| 60 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 61 | 1zzd | |- ( ( ph /\ y e. RR ) -> 1 e. ZZ ) |
|
| 62 | 20 | ffvelcdmda | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) e. RR ) |
| 63 | 62 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) e. RR ) |
| 64 | 63 57 | fmptd | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) : NN --> RR ) |
| 65 | peano2nn | |- ( m e. NN -> ( m + 1 ) e. NN ) |
|
| 66 | ffvelcdm | |- ( ( P : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
|
| 67 | 3 65 66 | syl2an | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
| 68 | i1ff | |- ( ( P ` ( m + 1 ) ) e. dom S.1 -> ( P ` ( m + 1 ) ) : RR --> RR ) |
|
| 69 | 67 68 | syl | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) : RR --> RR ) |
| 70 | 69 | ffnd | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) Fn RR ) |
| 71 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
|
| 72 | 35 70 39 39 40 41 71 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oR <_ ( P ` ( m + 1 ) ) <-> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) ) |
| 73 | 30 72 | mpbid | |- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
| 74 | 73 | r19.21bi | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
| 75 | 74 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
| 76 | eqid | |- ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) |
|
| 77 | fvex | |- ( ( P ` m ) ` y ) e. _V |
|
| 78 | 56 76 77 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
| 79 | 78 | adantl | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
| 80 | fveq2 | |- ( n = ( m + 1 ) -> ( P ` n ) = ( P ` ( m + 1 ) ) ) |
|
| 81 | 80 | fveq1d | |- ( n = ( m + 1 ) -> ( ( P ` n ) ` y ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
| 82 | fvex | |- ( ( P ` ( m + 1 ) ) ` y ) e. _V |
|
| 83 | 81 76 82 | fvmpt | |- ( ( m + 1 ) e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
| 84 | 65 83 | syl | |- ( m e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
| 85 | 84 | adantl | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
| 86 | 75 79 85 | 3brtr4d | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) <_ ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( m + 1 ) ) ) |
| 87 | 78 | breq1d | |- ( m e. NN -> ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) <_ z <-> ( ( P ` m ) ` y ) <_ z ) ) |
| 88 | 87 | ralbiia | |- ( A. m e. NN ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) <_ z <-> A. m e. NN ( ( P ` m ) ` y ) <_ z ) |
| 89 | 88 | rexbii | |- ( E. z e. RR A. m e. NN ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) <_ z <-> E. z e. RR A. m e. NN ( ( P ` m ) ` y ) <_ z ) |
| 90 | 49 89 | sylibr | |- ( ( ph /\ y e. RR ) -> E. z e. RR A. m e. NN ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) <_ z ) |
| 91 | 60 61 64 86 90 | climsup | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> sup ( ran ( n e. NN |-> ( ( P ` n ) ` y ) ) , RR , < ) ) |
| 92 | fveq2 | |- ( x = y -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` y ) ) |
|
| 93 | 92 | mpteq2dv | |- ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) ) |
| 94 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 95 | 93 94 | breq12d | |- ( x = y -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) ) |
| 96 | 95 | rspccva | |- ( ( A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 97 | 5 96 | sylan | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 98 | climuni | |- ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> sup ( ran ( n e. NN |-> ( ( P ` n ) ` y ) ) , RR , < ) /\ ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) -> sup ( ran ( n e. NN |-> ( ( P ` n ) ` y ) ) , RR , < ) = ( F ` y ) ) |
|
| 99 | 91 97 98 | syl2anc | |- ( ( ph /\ y e. RR ) -> sup ( ran ( n e. NN |-> ( ( P ` n ) ` y ) ) , RR , < ) = ( F ` y ) ) |
| 100 | 59 99 | eqtr3id | |- ( ( ph /\ y e. RR ) -> sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) = ( F ` y ) ) |
| 101 | 100 | mpteq2dva | |- ( ph -> ( y e. RR |-> sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) ) = ( y e. RR |-> ( F ` y ) ) ) |
| 102 | 55 101 | eqtr4d | |- ( ph -> F = ( y e. RR |-> sup ( ran ( m e. NN |-> ( ( P ` m ) ` y ) ) , RR , < ) ) ) |
| 103 | 102 15 | eqtr4di | |- ( ph -> F = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( P ` n ) ` x ) ) , RR , < ) ) ) |
| 104 | 103 | fveq2d | |- ( ph -> ( S.2 ` F ) = ( S.2 ` ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( P ` n ) ` x ) ) , RR , < ) ) ) ) |
| 105 | itg2itg1 | |- ( ( ( P ` m ) e. dom S.1 /\ 0p oR <_ ( P ` m ) ) -> ( S.2 ` ( P ` m ) ) = ( S.1 ` ( P ` m ) ) ) |
|
| 106 | 16 27 105 | syl2anc | |- ( ( ph /\ m e. NN ) -> ( S.2 ` ( P ` m ) ) = ( S.1 ` ( P ` m ) ) ) |
| 107 | 106 | mpteq2dva | |- ( ph -> ( m e. NN |-> ( S.2 ` ( P ` m ) ) ) = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) ) |
| 108 | 6 107 | eqtr4id | |- ( ph -> S = ( m e. NN |-> ( S.2 ` ( P ` m ) ) ) ) |
| 109 | 108 51 | eqtr4di | |- ( ph -> S = ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) ) |
| 110 | 109 | rneqd | |- ( ph -> ran S = ran ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) ) |
| 111 | 110 | supeq1d | |- ( ph -> sup ( ran S , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( P ` n ) ) ) , RR* , < ) ) |
| 112 | 54 104 111 | 3eqtr4d | |- ( ph -> ( S.2 ` F ) = sup ( ran S , RR* , < ) ) |