This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg2ub . If F approximately dominates G , then S.1 G <_ S.2 F . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2uba.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| itg2uba.2 | |- ( ph -> G e. dom S.1 ) |
||
| itg2uba.3 | |- ( ph -> A C_ RR ) |
||
| itg2uba.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg2uba.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( G ` x ) <_ ( F ` x ) ) |
||
| Assertion | itg2uba | |- ( ph -> ( S.1 ` G ) <_ ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2uba.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| 2 | itg2uba.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | itg2uba.3 | |- ( ph -> A C_ RR ) |
|
| 4 | itg2uba.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 5 | itg2uba.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( G ` x ) <_ ( F ` x ) ) |
|
| 6 | itg1cl | |- ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( S.1 ` G ) e. RR ) |
| 8 | 7 | rexrd | |- ( ph -> ( S.1 ` G ) e. RR* ) |
| 9 | nulmbl | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A e. dom vol ) |
|
| 10 | 3 4 9 | syl2anc | |- ( ph -> A e. dom vol ) |
| 11 | cmmbl | |- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( RR \ A ) e. dom vol ) |
| 13 | ifnot | |- if ( -. x e. A , ( G ` x ) , 0 ) = if ( x e. A , 0 , ( G ` x ) ) |
|
| 14 | eldif | |- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
|
| 15 | 14 | baibr | |- ( x e. RR -> ( -. x e. A <-> x e. ( RR \ A ) ) ) |
| 16 | 15 | ifbid | |- ( x e. RR -> if ( -. x e. A , ( G ` x ) , 0 ) = if ( x e. ( RR \ A ) , ( G ` x ) , 0 ) ) |
| 17 | 13 16 | eqtr3id | |- ( x e. RR -> if ( x e. A , 0 , ( G ` x ) ) = if ( x e. ( RR \ A ) , ( G ` x ) , 0 ) ) |
| 18 | 17 | mpteq2ia | |- ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) = ( x e. RR |-> if ( x e. ( RR \ A ) , ( G ` x ) , 0 ) ) |
| 19 | 18 | i1fres | |- ( ( G e. dom S.1 /\ ( RR \ A ) e. dom vol ) -> ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) e. dom S.1 ) |
| 20 | 2 12 19 | syl2anc | |- ( ph -> ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) e. dom S.1 ) |
| 21 | itg1cl | |- ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( ph -> ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) e. RR ) |
| 23 | 22 | rexrd | |- ( ph -> ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) e. RR* ) |
| 24 | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
|
| 25 | 1 24 | syl | |- ( ph -> ( S.2 ` F ) e. RR* ) |
| 26 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 27 | 2 26 | syl | |- ( ph -> G : RR --> RR ) |
| 28 | eldifi | |- ( y e. ( RR \ A ) -> y e. RR ) |
|
| 29 | ffvelcdm | |- ( ( G : RR --> RR /\ y e. RR ) -> ( G ` y ) e. RR ) |
|
| 30 | 27 28 29 | syl2an | |- ( ( ph /\ y e. ( RR \ A ) ) -> ( G ` y ) e. RR ) |
| 31 | 30 | leidd | |- ( ( ph /\ y e. ( RR \ A ) ) -> ( G ` y ) <_ ( G ` y ) ) |
| 32 | eldif | |- ( y e. ( RR \ A ) <-> ( y e. RR /\ -. y e. A ) ) |
|
| 33 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 34 | fveq2 | |- ( x = y -> ( G ` x ) = ( G ` y ) ) |
|
| 35 | 33 34 | ifbieq2d | |- ( x = y -> if ( x e. A , 0 , ( G ` x ) ) = if ( y e. A , 0 , ( G ` y ) ) ) |
| 36 | eqid | |- ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) = ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) |
|
| 37 | c0ex | |- 0 e. _V |
|
| 38 | fvex | |- ( G ` y ) e. _V |
|
| 39 | 37 38 | ifex | |- if ( y e. A , 0 , ( G ` y ) ) e. _V |
| 40 | 35 36 39 | fvmpt | |- ( y e. RR -> ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ` y ) = if ( y e. A , 0 , ( G ` y ) ) ) |
| 41 | iffalse | |- ( -. y e. A -> if ( y e. A , 0 , ( G ` y ) ) = ( G ` y ) ) |
|
| 42 | 40 41 | sylan9eq | |- ( ( y e. RR /\ -. y e. A ) -> ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ` y ) = ( G ` y ) ) |
| 43 | 32 42 | sylbi | |- ( y e. ( RR \ A ) -> ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ` y ) = ( G ` y ) ) |
| 44 | 43 | adantl | |- ( ( ph /\ y e. ( RR \ A ) ) -> ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ` y ) = ( G ` y ) ) |
| 45 | 31 44 | breqtrrd | |- ( ( ph /\ y e. ( RR \ A ) ) -> ( G ` y ) <_ ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ` y ) ) |
| 46 | 2 3 4 20 45 | itg1lea | |- ( ph -> ( S.1 ` G ) <_ ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) ) |
| 47 | iftrue | |- ( x e. A -> if ( x e. A , 0 , ( G ` x ) ) = 0 ) |
|
| 48 | 47 | adantl | |- ( ( ( ph /\ x e. RR ) /\ x e. A ) -> if ( x e. A , 0 , ( G ` x ) ) = 0 ) |
| 49 | 1 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
| 50 | elxrge0 | |- ( ( F ` x ) e. ( 0 [,] +oo ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) |
|
| 51 | 49 50 | sylib | |- ( ( ph /\ x e. RR ) -> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) |
| 52 | 51 | simprd | |- ( ( ph /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
| 53 | 52 | adantr | |- ( ( ( ph /\ x e. RR ) /\ x e. A ) -> 0 <_ ( F ` x ) ) |
| 54 | 48 53 | eqbrtrd | |- ( ( ( ph /\ x e. RR ) /\ x e. A ) -> if ( x e. A , 0 , ( G ` x ) ) <_ ( F ` x ) ) |
| 55 | iffalse | |- ( -. x e. A -> if ( x e. A , 0 , ( G ` x ) ) = ( G ` x ) ) |
|
| 56 | 55 | adantl | |- ( ( ( ph /\ x e. RR ) /\ -. x e. A ) -> if ( x e. A , 0 , ( G ` x ) ) = ( G ` x ) ) |
| 57 | 14 5 | sylan2br | |- ( ( ph /\ ( x e. RR /\ -. x e. A ) ) -> ( G ` x ) <_ ( F ` x ) ) |
| 58 | 57 | anassrs | |- ( ( ( ph /\ x e. RR ) /\ -. x e. A ) -> ( G ` x ) <_ ( F ` x ) ) |
| 59 | 56 58 | eqbrtrd | |- ( ( ( ph /\ x e. RR ) /\ -. x e. A ) -> if ( x e. A , 0 , ( G ` x ) ) <_ ( F ` x ) ) |
| 60 | 54 59 | pm2.61dan | |- ( ( ph /\ x e. RR ) -> if ( x e. A , 0 , ( G ` x ) ) <_ ( F ` x ) ) |
| 61 | 60 | ralrimiva | |- ( ph -> A. x e. RR if ( x e. A , 0 , ( G ` x ) ) <_ ( F ` x ) ) |
| 62 | reex | |- RR e. _V |
|
| 63 | 62 | a1i | |- ( ph -> RR e. _V ) |
| 64 | fvex | |- ( G ` x ) e. _V |
|
| 65 | 37 64 | ifex | |- if ( x e. A , 0 , ( G ` x ) ) e. _V |
| 66 | 65 | a1i | |- ( ( ph /\ x e. RR ) -> if ( x e. A , 0 , ( G ` x ) ) e. _V ) |
| 67 | fvexd | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. _V ) |
|
| 68 | eqidd | |- ( ph -> ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) = ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) |
|
| 69 | 1 | feqmptd | |- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 70 | 63 66 67 68 69 | ofrfval2 | |- ( ph -> ( ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) oR <_ F <-> A. x e. RR if ( x e. A , 0 , ( G ` x ) ) <_ ( F ` x ) ) ) |
| 71 | 61 70 | mpbird | |- ( ph -> ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) oR <_ F ) |
| 72 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) e. dom S.1 /\ ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) oR <_ F ) -> ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) <_ ( S.2 ` F ) ) |
|
| 73 | 1 20 71 72 | syl3anc | |- ( ph -> ( S.1 ` ( x e. RR |-> if ( x e. A , 0 , ( G ` x ) ) ) ) <_ ( S.2 ` F ) ) |
| 74 | 8 23 25 46 73 | xrletrd | |- ( ph -> ( S.1 ` G ) <_ ( S.2 ` F ) ) |