This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr | |- RR* = ( RR u. { +oo , -oo } ) |
|
| 2 | 1 | eleq2i | |- ( A e. RR* <-> A e. ( RR u. { +oo , -oo } ) ) |
| 3 | elun | |- ( A e. ( RR u. { +oo , -oo } ) <-> ( A e. RR \/ A e. { +oo , -oo } ) ) |
|
| 4 | pnfex | |- +oo e. _V |
|
| 5 | mnfxr | |- -oo e. RR* |
|
| 6 | 5 | elexi | |- -oo e. _V |
| 7 | 4 6 | elpr2 | |- ( A e. { +oo , -oo } <-> ( A = +oo \/ A = -oo ) ) |
| 8 | 7 | orbi2i | |- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
| 9 | 3orass | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
|
| 10 | 8 9 | bitr4i | |- ( ( A e. RR \/ A e. { +oo , -oo } ) <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 11 | 2 3 10 | 3bitri | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |