This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrrebnd | |- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt | |- ( A e. RR -> -oo < A ) |
|
| 2 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
| 3 | 1 2 | jca | |- ( A e. RR -> ( -oo < A /\ A < +oo ) ) |
| 4 | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
|
| 5 | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
|
| 6 | 4 5 | orbi12d | |- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) <-> ( -. A < +oo \/ -. -oo < A ) ) ) |
| 7 | ianor | |- ( -. ( -oo < A /\ A < +oo ) <-> ( -. -oo < A \/ -. A < +oo ) ) |
|
| 8 | orcom | |- ( ( -. -oo < A \/ -. A < +oo ) <-> ( -. A < +oo \/ -. -oo < A ) ) |
|
| 9 | 7 8 | bitr2i | |- ( ( -. A < +oo \/ -. -oo < A ) <-> -. ( -oo < A /\ A < +oo ) ) |
| 10 | 6 9 | bitrdi | |- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) <-> -. ( -oo < A /\ A < +oo ) ) ) |
| 11 | 10 | con2bid | |- ( A e. RR* -> ( ( -oo < A /\ A < +oo ) <-> -. ( A = +oo \/ A = -oo ) ) ) |
| 12 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 13 | 3orass | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
|
| 14 | orcom | |- ( ( A e. RR \/ ( A = +oo \/ A = -oo ) ) <-> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
|
| 15 | 13 14 | bitri | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
| 16 | 12 15 | sylbb | |- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
| 17 | 16 | ord | |- ( A e. RR* -> ( -. ( A = +oo \/ A = -oo ) -> A e. RR ) ) |
| 18 | 11 17 | sylbid | |- ( A e. RR* -> ( ( -oo < A /\ A < +oo ) -> A e. RR ) ) |
| 19 | 3 18 | impbid2 | |- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |