This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipsubdir.m | |- .- = ( -g ` W ) |
||
| ipsubdir.s | |- S = ( -g ` F ) |
||
| ip2subdi.p | |- .+ = ( +g ` F ) |
||
| ip2subdi.1 | |- ( ph -> W e. PreHil ) |
||
| ip2subdi.2 | |- ( ph -> A e. V ) |
||
| ip2subdi.3 | |- ( ph -> B e. V ) |
||
| ip2subdi.4 | |- ( ph -> C e. V ) |
||
| ip2subdi.5 | |- ( ph -> D e. V ) |
||
| Assertion | ip2subdi | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipsubdir.m | |- .- = ( -g ` W ) |
|
| 5 | ipsubdir.s | |- S = ( -g ` F ) |
|
| 6 | ip2subdi.p | |- .+ = ( +g ` F ) |
|
| 7 | ip2subdi.1 | |- ( ph -> W e. PreHil ) |
|
| 8 | ip2subdi.2 | |- ( ph -> A e. V ) |
|
| 9 | ip2subdi.3 | |- ( ph -> B e. V ) |
|
| 10 | ip2subdi.4 | |- ( ph -> C e. V ) |
|
| 11 | ip2subdi.5 | |- ( ph -> D e. V ) |
|
| 12 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 13 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 14 | 7 13 | syl | |- ( ph -> W e. LMod ) |
| 15 | 1 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 16 | 14 15 | syl | |- ( ph -> F e. Ring ) |
| 17 | ringabl | |- ( F e. Ring -> F e. Abel ) |
|
| 18 | 16 17 | syl | |- ( ph -> F e. Abel ) |
| 19 | 1 2 3 12 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
| 20 | 7 8 10 19 | syl3anc | |- ( ph -> ( A ., C ) e. ( Base ` F ) ) |
| 21 | 1 2 3 12 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` F ) ) |
| 22 | 7 8 11 21 | syl3anc | |- ( ph -> ( A ., D ) e. ( Base ` F ) ) |
| 23 | 1 2 3 12 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
| 24 | 7 9 10 23 | syl3anc | |- ( ph -> ( B ., C ) e. ( Base ` F ) ) |
| 25 | 12 6 5 18 20 22 24 | ablsubsub4 | |- ( ph -> ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) = ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) ) |
| 26 | 25 | oveq1d | |- ( ph -> ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
| 27 | 3 4 | lmodvsubcl | |- ( ( W e. LMod /\ C e. V /\ D e. V ) -> ( C .- D ) e. V ) |
| 28 | 14 10 11 27 | syl3anc | |- ( ph -> ( C .- D ) e. V ) |
| 29 | 1 2 3 4 5 | ipsubdir | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( C .- D ) e. V ) ) -> ( ( A .- B ) ., ( C .- D ) ) = ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) ) |
| 30 | 7 8 9 28 29 | syl13anc | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) ) |
| 31 | 1 2 3 4 5 | ipsubdi | |- ( ( W e. PreHil /\ ( A e. V /\ C e. V /\ D e. V ) ) -> ( A ., ( C .- D ) ) = ( ( A ., C ) S ( A ., D ) ) ) |
| 32 | 7 8 10 11 31 | syl13anc | |- ( ph -> ( A ., ( C .- D ) ) = ( ( A ., C ) S ( A ., D ) ) ) |
| 33 | 1 2 3 4 5 | ipsubdi | |- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ D e. V ) ) -> ( B ., ( C .- D ) ) = ( ( B ., C ) S ( B ., D ) ) ) |
| 34 | 7 9 10 11 33 | syl13anc | |- ( ph -> ( B ., ( C .- D ) ) = ( ( B ., C ) S ( B ., D ) ) ) |
| 35 | 32 34 | oveq12d | |- ( ph -> ( ( A ., ( C .- D ) ) S ( B ., ( C .- D ) ) ) = ( ( ( A ., C ) S ( A ., D ) ) S ( ( B ., C ) S ( B ., D ) ) ) ) |
| 36 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 37 | 16 36 | syl | |- ( ph -> F e. Grp ) |
| 38 | 12 5 | grpsubcl | |- ( ( F e. Grp /\ ( A ., C ) e. ( Base ` F ) /\ ( A ., D ) e. ( Base ` F ) ) -> ( ( A ., C ) S ( A ., D ) ) e. ( Base ` F ) ) |
| 39 | 37 20 22 38 | syl3anc | |- ( ph -> ( ( A ., C ) S ( A ., D ) ) e. ( Base ` F ) ) |
| 40 | 1 2 3 12 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` F ) ) |
| 41 | 7 9 11 40 | syl3anc | |- ( ph -> ( B ., D ) e. ( Base ` F ) ) |
| 42 | 12 6 5 18 39 24 41 | ablsubsub | |- ( ph -> ( ( ( A ., C ) S ( A ., D ) ) S ( ( B ., C ) S ( B ., D ) ) ) = ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) ) |
| 43 | 30 35 42 | 3eqtrd | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( ( A ., C ) S ( A ., D ) ) S ( B ., C ) ) .+ ( B ., D ) ) ) |
| 44 | 12 6 | ringacl | |- ( ( F e. Ring /\ ( A ., D ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) ) -> ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) |
| 45 | 16 22 24 44 | syl3anc | |- ( ph -> ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) |
| 46 | 12 6 5 | abladdsub | |- ( ( F e. Abel /\ ( ( A ., C ) e. ( Base ` F ) /\ ( B ., D ) e. ( Base ` F ) /\ ( ( A ., D ) .+ ( B ., C ) ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
| 47 | 18 20 41 45 46 | syl13anc | |- ( ph -> ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) = ( ( ( A ., C ) S ( ( A ., D ) .+ ( B ., C ) ) ) .+ ( B ., D ) ) ) |
| 48 | 26 43 47 | 3eqtr4d | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) .+ ( B ., D ) ) S ( ( A ., D ) .+ ( B ., C ) ) ) ) |