This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
| clmsub.k | |- K = ( Base ` F ) |
||
| Assertion | clmsub | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | clmsub.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 4 | subrgsubg | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
|
| 5 | 3 4 | syl | |- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
| 6 | cnfldsub | |- - = ( -g ` CCfld ) |
|
| 7 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 8 | eqid | |- ( -g ` ( CCfld |`s K ) ) = ( -g ` ( CCfld |`s K ) ) |
|
| 9 | 6 7 8 | subgsub | |- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 10 | 5 9 | syl3an1 | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 11 | 1 2 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 12 | 11 | fveq2d | |- ( W e. CMod -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( -g ` F ) = ( -g ` ( CCfld |`s K ) ) ) |
| 14 | 13 | oveqd | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) = ( A ( -g ` ( CCfld |`s K ) ) B ) ) |
| 15 | 10 14 | eqtr4d | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |