This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.f | |- K = ( Base ` F ) |
||
| ipass.s | |- .x. = ( .s ` W ) |
||
| ipass.p | |- .X. = ( .r ` F ) |
||
| ipassr.i | |- .* = ( *r ` F ) |
||
| Assertion | ipassr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. C ) = ( A ., ( ( .* ` C ) .x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.f | |- K = ( Base ` F ) |
|
| 5 | ipass.s | |- .x. = ( .s ` W ) |
|
| 6 | ipass.p | |- .X. = ( .r ` F ) |
|
| 7 | ipassr.i | |- .* = ( *r ` F ) |
|
| 8 | simpl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil ) |
|
| 9 | simpr1 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V ) |
|
| 10 | simpr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V ) |
|
| 11 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 12 | simpr3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K ) |
|
| 13 | 7 4 | srngcl | |- ( ( F e. *Ring /\ C e. K ) -> ( .* ` C ) e. K ) |
| 14 | 11 12 13 | syl2an2r | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` C ) e. K ) |
| 15 | 1 2 3 4 5 6 7 | ipassr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( .* ` C ) e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) ) |
| 16 | 8 9 10 14 15 | syl13anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( ( .* ` C ) .x. B ) ) = ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) ) |
| 17 | 7 4 | srngnvl | |- ( ( F e. *Ring /\ C e. K ) -> ( .* ` ( .* ` C ) ) = C ) |
| 18 | 11 12 17 | syl2an2r | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( .* ` C ) ) = C ) |
| 19 | 18 | oveq2d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. ( .* ` ( .* ` C ) ) ) = ( ( A ., B ) .X. C ) ) |
| 20 | 16 19 | eqtr2d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( A ., B ) .X. C ) = ( A ., ( ( .* ` C ) .x. B ) ) ) |