This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugate of an inner product in a pre-Hilbert space. Equation I1 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipcj.i | |- .* = ( *r ` F ) |
||
| Assertion | ipcj | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( .* ` ( A ., B ) ) = ( B ., A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipcj.i | |- .* = ( *r ` F ) |
|
| 5 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 6 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 7 | 3 1 2 5 4 6 | isphl | |- ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = ( 0g ` F ) -> x = ( 0g ` W ) ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |
| 8 | 7 | simp3bi | |- ( W e. PreHil -> A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = ( 0g ` F ) -> x = ( 0g ` W ) ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) |
| 9 | simp3 | |- ( ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = ( 0g ` F ) -> x = ( 0g ` W ) ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) -> A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) |
|
| 10 | 9 | ralimi | |- ( A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = ( 0g ` F ) -> x = ( 0g ` W ) ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) -> A. x e. V A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) |
| 11 | 8 10 | syl | |- ( W e. PreHil -> A. x e. V A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) |
| 12 | fvoveq1 | |- ( x = A -> ( .* ` ( x ., y ) ) = ( .* ` ( A ., y ) ) ) |
|
| 13 | oveq2 | |- ( x = A -> ( y ., x ) = ( y ., A ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = A -> ( ( .* ` ( x ., y ) ) = ( y ., x ) <-> ( .* ` ( A ., y ) ) = ( y ., A ) ) ) |
| 15 | oveq2 | |- ( y = B -> ( A ., y ) = ( A ., B ) ) |
|
| 16 | 15 | fveq2d | |- ( y = B -> ( .* ` ( A ., y ) ) = ( .* ` ( A ., B ) ) ) |
| 17 | oveq1 | |- ( y = B -> ( y ., A ) = ( B ., A ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( y = B -> ( ( .* ` ( A ., y ) ) = ( y ., A ) <-> ( .* ` ( A ., B ) ) = ( B ., A ) ) ) |
| 19 | 14 18 | rspc2v | |- ( ( A e. V /\ B e. V ) -> ( A. x e. V A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) -> ( .* ` ( A ., B ) ) = ( B ., A ) ) ) |
| 20 | 11 19 | syl5com | |- ( W e. PreHil -> ( ( A e. V /\ B e. V ) -> ( .* ` ( A ., B ) ) = ( B ., A ) ) ) |
| 21 | 20 | 3impib | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( .* ` ( A ., B ) ) = ( B ., A ) ) |