This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivmul2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ledivmul | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( C x. B ) ) ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | recn | |- ( C e. RR -> C e. CC ) |
|
| 4 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) = ( C x. B ) ) |
| 6 | 5 | adantrr | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 7 | 6 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 8 | 7 | breq2d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( B x. C ) <-> A <_ ( C x. B ) ) ) |
| 9 | 1 8 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( B x. C ) ) ) |