This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.f | |- K = ( Base ` F ) |
||
| ipass.s | |- .x. = ( .s ` W ) |
||
| ipass.p | |- .X. = ( .r ` F ) |
||
| Assertion | ipass | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A .X. ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.f | |- K = ( Base ` F ) |
|
| 5 | ipass.s | |- .x. = ( .s ` W ) |
|
| 6 | ipass.p | |- .X. = ( .r ` F ) |
|
| 7 | eqid | |- ( x e. V |-> ( x ., C ) ) = ( x e. V |-> ( x ., C ) ) |
|
| 8 | 1 2 3 7 | phllmhm | |- ( ( W e. PreHil /\ C e. V ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 9 | 8 | 3ad2antr3 | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 10 | simpr1 | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) |
|
| 11 | simpr2 | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 12 | rlmvsca | |- ( .r ` F ) = ( .s ` ( ringLMod ` F ) ) |
|
| 13 | 6 12 | eqtri | |- .X. = ( .s ` ( ringLMod ` F ) ) |
| 14 | 1 4 3 5 13 | lmhmlin | |- ( ( ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ A e. K /\ B e. V ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
| 15 | 9 10 11 14 | syl3anc | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
| 16 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 17 | 16 | adantr | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
| 18 | 3 1 5 4 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ B e. V ) -> ( A .x. B ) e. V ) |
| 19 | 17 10 11 18 | syl3anc | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .x. B ) e. V ) |
| 20 | oveq1 | |- ( x = ( A .x. B ) -> ( x ., C ) = ( ( A .x. B ) ., C ) ) |
|
| 21 | ovex | |- ( x ., C ) e. _V |
|
| 22 | 20 7 21 | fvmpt3i | |- ( ( A .x. B ) e. V -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) |
| 23 | 19 22 | syl | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .x. B ) ) = ( ( A .x. B ) ., C ) ) |
| 24 | oveq1 | |- ( x = B -> ( x ., C ) = ( B ., C ) ) |
|
| 25 | 24 7 21 | fvmpt3i | |- ( B e. V -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
| 26 | 11 25 | syl | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
| 27 | 26 | oveq2d | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A .X. ( ( x e. V |-> ( x ., C ) ) ` B ) ) = ( A .X. ( B ., C ) ) ) |
| 28 | 15 23 27 | 3eqtr3d | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A .X. ( B ., C ) ) ) |