This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cphreccl . (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsubrglem.k | |- K = ( Base ` F ) |
|
| cphsubrglem.1 | |- ( ph -> F = ( CCfld |`s A ) ) |
||
| cphsubrglem.2 | |- ( ph -> F e. DivRing ) |
||
| Assertion | cphreccllem | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( 1 / X ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | |- K = ( Base ` F ) |
|
| 2 | cphsubrglem.1 | |- ( ph -> F = ( CCfld |`s A ) ) |
|
| 3 | cphsubrglem.2 | |- ( ph -> F e. DivRing ) |
|
| 4 | 1 2 3 | cphsubrglem | |- ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) |
| 5 | 4 | simp3d | |- ( ph -> K e. ( SubRing ` CCfld ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> K e. ( SubRing ` CCfld ) ) |
| 7 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 8 | 7 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 9 | 6 8 | syl | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> K C_ CC ) |
| 10 | simp2 | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. K ) |
|
| 11 | 9 10 | sseldd | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. CC ) |
| 12 | simp3 | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X =/= 0 ) |
|
| 13 | cnfldinv | |- ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| 15 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 16 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 17 | 15 16 | subrg0 | |- ( K e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
| 18 | 6 17 | syl | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
| 19 | 4 | simp1d | |- ( ph -> F = ( CCfld |`s K ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> F = ( CCfld |`s K ) ) |
| 21 | 20 | fveq2d | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( 0g ` F ) = ( 0g ` ( CCfld |`s K ) ) ) |
| 22 | 18 21 | eqtr4d | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> 0 = ( 0g ` F ) ) |
| 23 | 12 22 | neeqtrd | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X =/= ( 0g ` F ) ) |
| 24 | eldifsn | |- ( X e. ( K \ { ( 0g ` F ) } ) <-> ( X e. K /\ X =/= ( 0g ` F ) ) ) |
|
| 25 | 10 23 24 | sylanbrc | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. ( K \ { ( 0g ` F ) } ) ) |
| 26 | 3 | 3ad2ant1 | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> F e. DivRing ) |
| 27 | eqid | |- ( Unit ` F ) = ( Unit ` F ) |
|
| 28 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 29 | 1 27 28 | isdrng | |- ( F e. DivRing <-> ( F e. Ring /\ ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) ) |
| 30 | 29 | simprbi | |- ( F e. DivRing -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) |
| 31 | 26 30 | syl | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( Unit ` F ) = ( K \ { ( 0g ` F ) } ) ) |
| 32 | 20 | fveq2d | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( Unit ` F ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 33 | 31 32 | eqtr3d | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( K \ { ( 0g ` F ) } ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 34 | 25 33 | eleqtrd | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> X e. ( Unit ` ( CCfld |`s K ) ) ) |
| 35 | eqid | |- ( Unit ` CCfld ) = ( Unit ` CCfld ) |
|
| 36 | eqid | |- ( Unit ` ( CCfld |`s K ) ) = ( Unit ` ( CCfld |`s K ) ) |
|
| 37 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 38 | 15 35 36 37 | subrgunit | |- ( K e. ( SubRing ` CCfld ) -> ( X e. ( Unit ` ( CCfld |`s K ) ) <-> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) ) |
| 39 | 6 38 | syl | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( X e. ( Unit ` ( CCfld |`s K ) ) <-> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) ) |
| 40 | 34 39 | mpbid | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( X e. ( Unit ` CCfld ) /\ X e. K /\ ( ( invr ` CCfld ) ` X ) e. K ) ) |
| 41 | 40 | simp3d | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) e. K ) |
| 42 | 14 41 | eqeltrrd | |- ( ( ph /\ X e. K /\ X =/= 0 ) -> ( 1 / X ) e. K ) |