This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 17-Dec-2017) Revise df-cnfld . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldcj | |- * = ( *r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf | |- * : CC --> CC |
|
| 2 | cnex | |- CC e. _V |
|
| 3 | fex2 | |- ( ( * : CC --> CC /\ CC e. _V /\ CC e. _V ) -> * e. _V ) |
|
| 4 | 1 2 2 3 | mp3an | |- * e. _V |
| 5 | cnfldstr | |- CCfld Struct <. 1 , ; 1 3 >. |
|
| 6 | starvid | |- *r = Slot ( *r ` ndx ) |
|
| 7 | ssun2 | |- { <. ( *r ` ndx ) , * >. } C_ ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
|
| 8 | ssun1 | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 9 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 10 | 8 9 | sseqtrri | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ CCfld |
| 11 | 7 10 | sstri | |- { <. ( *r ` ndx ) , * >. } C_ CCfld |
| 12 | 5 6 11 | strfv | |- ( * e. _V -> * = ( *r ` CCfld ) ) |
| 13 | 4 12 | ax-mp | |- * = ( *r ` CCfld ) |