This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ip0l.z | |- Z = ( 0g ` F ) |
||
| ip0l.o | |- .0. = ( 0g ` W ) |
||
| Assertion | ip0r | |- ( ( W e. PreHil /\ A e. V ) -> ( A ., .0. ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ip0l.z | |- Z = ( 0g ` F ) |
|
| 5 | ip0l.o | |- .0. = ( 0g ` W ) |
|
| 6 | 1 2 3 4 5 | ip0l | |- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |
| 7 | 6 | fveq2d | |- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( ( *r ` F ) ` Z ) ) |
| 8 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 9 | 8 | adantr | |- ( ( W e. PreHil /\ A e. V ) -> W e. LMod ) |
| 10 | 3 5 | lmod0vcl | |- ( W e. LMod -> .0. e. V ) |
| 11 | 9 10 | syl | |- ( ( W e. PreHil /\ A e. V ) -> .0. e. V ) |
| 12 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 13 | 1 2 3 12 | ipcj | |- ( ( W e. PreHil /\ .0. e. V /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
| 14 | 13 | 3expa | |- ( ( ( W e. PreHil /\ .0. e. V ) /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
| 15 | 14 | an32s | |- ( ( ( W e. PreHil /\ A e. V ) /\ .0. e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
| 16 | 11 15 | mpdan | |- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
| 17 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 18 | 17 | adantr | |- ( ( W e. PreHil /\ A e. V ) -> F e. *Ring ) |
| 19 | 12 4 | srng0 | |- ( F e. *Ring -> ( ( *r ` F ) ` Z ) = Z ) |
| 20 | 18 19 | syl | |- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` Z ) = Z ) |
| 21 | 7 16 20 | 3eqtr3d | |- ( ( W e. PreHil /\ A e. V ) -> ( A ., .0. ) = Z ) |