This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of Mendelson p. 254. (Contributed by NM, 24-Jul-2004) (Proof shortened by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpen | |- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~~ ( B X. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | |- Rel ~~ |
|
| 2 | 1 | brrelex1i | |- ( C ~~ D -> C e. _V ) |
| 3 | endom | |- ( A ~~ B -> A ~<_ B ) |
|
| 4 | xpdom1g | |- ( ( C e. _V /\ A ~<_ B ) -> ( A X. C ) ~<_ ( B X. C ) ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~<_ ( B X. C ) ) |
| 6 | 1 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 7 | endom | |- ( C ~~ D -> C ~<_ D ) |
|
| 8 | xpdom2g | |- ( ( B e. _V /\ C ~<_ D ) -> ( B X. C ) ~<_ ( B X. D ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A ~~ B /\ C ~~ D ) -> ( B X. C ) ~<_ ( B X. D ) ) |
| 10 | domtr | |- ( ( ( A X. C ) ~<_ ( B X. C ) /\ ( B X. C ) ~<_ ( B X. D ) ) -> ( A X. C ) ~<_ ( B X. D ) ) |
|
| 11 | 5 9 10 | syl2anc | |- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~<_ ( B X. D ) ) |
| 12 | 1 | brrelex2i | |- ( C ~~ D -> D e. _V ) |
| 13 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 14 | endom | |- ( B ~~ A -> B ~<_ A ) |
|
| 15 | 13 14 | syl | |- ( A ~~ B -> B ~<_ A ) |
| 16 | xpdom1g | |- ( ( D e. _V /\ B ~<_ A ) -> ( B X. D ) ~<_ ( A X. D ) ) |
|
| 17 | 12 15 16 | syl2anr | |- ( ( A ~~ B /\ C ~~ D ) -> ( B X. D ) ~<_ ( A X. D ) ) |
| 18 | 1 | brrelex1i | |- ( A ~~ B -> A e. _V ) |
| 19 | ensym | |- ( C ~~ D -> D ~~ C ) |
|
| 20 | endom | |- ( D ~~ C -> D ~<_ C ) |
|
| 21 | 19 20 | syl | |- ( C ~~ D -> D ~<_ C ) |
| 22 | xpdom2g | |- ( ( A e. _V /\ D ~<_ C ) -> ( A X. D ) ~<_ ( A X. C ) ) |
|
| 23 | 18 21 22 | syl2an | |- ( ( A ~~ B /\ C ~~ D ) -> ( A X. D ) ~<_ ( A X. C ) ) |
| 24 | domtr | |- ( ( ( B X. D ) ~<_ ( A X. D ) /\ ( A X. D ) ~<_ ( A X. C ) ) -> ( B X. D ) ~<_ ( A X. C ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( ( A ~~ B /\ C ~~ D ) -> ( B X. D ) ~<_ ( A X. C ) ) |
| 26 | sbth | |- ( ( ( A X. C ) ~<_ ( B X. D ) /\ ( B X. D ) ~<_ ( A X. C ) ) -> ( A X. C ) ~~ ( B X. D ) ) |
|
| 27 | 11 25 26 | syl2anc | |- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~~ ( B X. D ) ) |