This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM, 4-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsnen.1 | |- A e. _V |
|
| xpsnen.2 | |- B e. _V |
||
| Assertion | xpsnen | |- ( A X. { B } ) ~~ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsnen.1 | |- A e. _V |
|
| 2 | xpsnen.2 | |- B e. _V |
|
| 3 | snex | |- { B } e. _V |
|
| 4 | 1 3 | xpex | |- ( A X. { B } ) e. _V |
| 5 | elxp | |- ( y e. ( A X. { B } ) <-> E. x E. z ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) ) |
|
| 6 | inteq | |- ( y = <. x , z >. -> |^| y = |^| <. x , z >. ) |
|
| 7 | 6 | inteqd | |- ( y = <. x , z >. -> |^| |^| y = |^| |^| <. x , z >. ) |
| 8 | vex | |- x e. _V |
|
| 9 | vex | |- z e. _V |
|
| 10 | 8 9 | op1stb | |- |^| |^| <. x , z >. = x |
| 11 | 7 10 | eqtrdi | |- ( y = <. x , z >. -> |^| |^| y = x ) |
| 12 | 11 8 | eqeltrdi | |- ( y = <. x , z >. -> |^| |^| y e. _V ) |
| 13 | 12 | adantr | |- ( ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) -> |^| |^| y e. _V ) |
| 14 | 13 | exlimivv | |- ( E. x E. z ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) -> |^| |^| y e. _V ) |
| 15 | 5 14 | sylbi | |- ( y e. ( A X. { B } ) -> |^| |^| y e. _V ) |
| 16 | opex | |- <. x , B >. e. _V |
|
| 17 | 16 | a1i | |- ( x e. A -> <. x , B >. e. _V ) |
| 18 | eqvisset | |- ( x = |^| |^| y -> |^| |^| y e. _V ) |
|
| 19 | ancom | |- ( ( ( y = <. x , z >. /\ x e. A ) /\ z e. { B } ) <-> ( z e. { B } /\ ( y = <. x , z >. /\ x e. A ) ) ) |
|
| 20 | anass | |- ( ( ( y = <. x , z >. /\ x e. A ) /\ z e. { B } ) <-> ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) ) |
|
| 21 | velsn | |- ( z e. { B } <-> z = B ) |
|
| 22 | 21 | anbi1i | |- ( ( z e. { B } /\ ( y = <. x , z >. /\ x e. A ) ) <-> ( z = B /\ ( y = <. x , z >. /\ x e. A ) ) ) |
| 23 | 19 20 22 | 3bitr3i | |- ( ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) <-> ( z = B /\ ( y = <. x , z >. /\ x e. A ) ) ) |
| 24 | 23 | exbii | |- ( E. z ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) <-> E. z ( z = B /\ ( y = <. x , z >. /\ x e. A ) ) ) |
| 25 | opeq2 | |- ( z = B -> <. x , z >. = <. x , B >. ) |
|
| 26 | 25 | eqeq2d | |- ( z = B -> ( y = <. x , z >. <-> y = <. x , B >. ) ) |
| 27 | 26 | anbi1d | |- ( z = B -> ( ( y = <. x , z >. /\ x e. A ) <-> ( y = <. x , B >. /\ x e. A ) ) ) |
| 28 | 2 27 | ceqsexv | |- ( E. z ( z = B /\ ( y = <. x , z >. /\ x e. A ) ) <-> ( y = <. x , B >. /\ x e. A ) ) |
| 29 | inteq | |- ( y = <. x , B >. -> |^| y = |^| <. x , B >. ) |
|
| 30 | 29 | inteqd | |- ( y = <. x , B >. -> |^| |^| y = |^| |^| <. x , B >. ) |
| 31 | 8 2 | op1stb | |- |^| |^| <. x , B >. = x |
| 32 | 30 31 | eqtr2di | |- ( y = <. x , B >. -> x = |^| |^| y ) |
| 33 | 32 | pm4.71ri | |- ( y = <. x , B >. <-> ( x = |^| |^| y /\ y = <. x , B >. ) ) |
| 34 | 33 | anbi1i | |- ( ( y = <. x , B >. /\ x e. A ) <-> ( ( x = |^| |^| y /\ y = <. x , B >. ) /\ x e. A ) ) |
| 35 | anass | |- ( ( ( x = |^| |^| y /\ y = <. x , B >. ) /\ x e. A ) <-> ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) ) |
|
| 36 | 34 35 | bitri | |- ( ( y = <. x , B >. /\ x e. A ) <-> ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) ) |
| 37 | 24 28 36 | 3bitri | |- ( E. z ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) <-> ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) ) |
| 38 | 37 | exbii | |- ( E. x E. z ( y = <. x , z >. /\ ( x e. A /\ z e. { B } ) ) <-> E. x ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) ) |
| 39 | 5 38 | bitri | |- ( y e. ( A X. { B } ) <-> E. x ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) ) |
| 40 | opeq1 | |- ( x = |^| |^| y -> <. x , B >. = <. |^| |^| y , B >. ) |
|
| 41 | 40 | eqeq2d | |- ( x = |^| |^| y -> ( y = <. x , B >. <-> y = <. |^| |^| y , B >. ) ) |
| 42 | eleq1 | |- ( x = |^| |^| y -> ( x e. A <-> |^| |^| y e. A ) ) |
|
| 43 | 41 42 | anbi12d | |- ( x = |^| |^| y -> ( ( y = <. x , B >. /\ x e. A ) <-> ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) ) ) |
| 44 | 43 | ceqsexgv | |- ( |^| |^| y e. _V -> ( E. x ( x = |^| |^| y /\ ( y = <. x , B >. /\ x e. A ) ) <-> ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) ) ) |
| 45 | 39 44 | bitrid | |- ( |^| |^| y e. _V -> ( y e. ( A X. { B } ) <-> ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) ) ) |
| 46 | 18 45 | syl | |- ( x = |^| |^| y -> ( y e. ( A X. { B } ) <-> ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) ) ) |
| 47 | 46 | pm5.32ri | |- ( ( y e. ( A X. { B } ) /\ x = |^| |^| y ) <-> ( ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) /\ x = |^| |^| y ) ) |
| 48 | 32 | adantr | |- ( ( y = <. x , B >. /\ x e. A ) -> x = |^| |^| y ) |
| 49 | 48 | pm4.71i | |- ( ( y = <. x , B >. /\ x e. A ) <-> ( ( y = <. x , B >. /\ x e. A ) /\ x = |^| |^| y ) ) |
| 50 | 43 | pm5.32ri | |- ( ( ( y = <. x , B >. /\ x e. A ) /\ x = |^| |^| y ) <-> ( ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) /\ x = |^| |^| y ) ) |
| 51 | 49 50 | bitr2i | |- ( ( ( y = <. |^| |^| y , B >. /\ |^| |^| y e. A ) /\ x = |^| |^| y ) <-> ( y = <. x , B >. /\ x e. A ) ) |
| 52 | ancom | |- ( ( y = <. x , B >. /\ x e. A ) <-> ( x e. A /\ y = <. x , B >. ) ) |
|
| 53 | 47 51 52 | 3bitri | |- ( ( y e. ( A X. { B } ) /\ x = |^| |^| y ) <-> ( x e. A /\ y = <. x , B >. ) ) |
| 54 | 4 1 15 17 53 | en2i | |- ( A X. { B } ) ~~ A |