This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsuc | |- ( Lim A -> ( B e. A <-> suc B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 | |- ( Lim A <-> ( Ord A /\ (/) e. A /\ A. x e. A suc x e. A ) ) |
|
| 2 | suceq | |- ( x = B -> suc x = suc B ) |
|
| 3 | 2 | eleq1d | |- ( x = B -> ( suc x e. A <-> suc B e. A ) ) |
| 4 | 3 | rspccv | |- ( A. x e. A suc x e. A -> ( B e. A -> suc B e. A ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( Ord A /\ (/) e. A /\ A. x e. A suc x e. A ) -> ( B e. A -> suc B e. A ) ) |
| 6 | 1 5 | sylbi | |- ( Lim A -> ( B e. A -> suc B e. A ) ) |
| 7 | limord | |- ( Lim A -> Ord A ) |
|
| 8 | ordtr | |- ( Ord A -> Tr A ) |
|
| 9 | trsuc | |- ( ( Tr A /\ suc B e. A ) -> B e. A ) |
|
| 10 | 9 | ex | |- ( Tr A -> ( suc B e. A -> B e. A ) ) |
| 11 | 7 8 10 | 3syl | |- ( Lim A -> ( suc B e. A -> B e. A ) ) |
| 12 | 6 11 | impbid | |- ( Lim A -> ( B e. A <-> suc B e. A ) ) |