This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limeq | |- ( A = B -> ( Lim A <-> Lim B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq | |- ( A = B -> ( Ord A <-> Ord B ) ) |
|
| 2 | neeq1 | |- ( A = B -> ( A =/= (/) <-> B =/= (/) ) ) |
|
| 3 | id | |- ( A = B -> A = B ) |
|
| 4 | unieq | |- ( A = B -> U. A = U. B ) |
|
| 5 | 3 4 | eqeq12d | |- ( A = B -> ( A = U. A <-> B = U. B ) ) |
| 6 | 1 2 5 | 3anbi123d | |- ( A = B -> ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( Ord B /\ B =/= (/) /\ B = U. B ) ) ) |
| 7 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 8 | df-lim | |- ( Lim B <-> ( Ord B /\ B =/= (/) /\ B = U. B ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( A = B -> ( Lim A <-> Lim B ) ) |