This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of TakeutiZaring p. 33. (Contributed by NM, 20-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoini | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( H " ( A i^i ( `' R " { D } ) ) ) = ( B i^i ( `' S " { ( H ` D ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 | |- ( H " ( A i^i ( `' R " { D } ) ) ) = { y | E. x e. ( A i^i ( `' R " { D } ) ) x H y } |
|
| 2 | elin | |- ( y e. ( B i^i ( `' S " { ( H ` D ) } ) ) <-> ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) ) |
|
| 3 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 4 | f1ofo | |- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
|
| 5 | forn | |- ( H : A -onto-> B -> ran H = B ) |
|
| 6 | 5 | eleq2d | |- ( H : A -onto-> B -> ( y e. ran H <-> y e. B ) ) |
| 7 | 3 4 6 | 3syl | |- ( H Isom R , S ( A , B ) -> ( y e. ran H <-> y e. B ) ) |
| 8 | f1ofn | |- ( H : A -1-1-onto-> B -> H Fn A ) |
|
| 9 | fvelrnb | |- ( H Fn A -> ( y e. ran H <-> E. x e. A ( H ` x ) = y ) ) |
|
| 10 | 3 8 9 | 3syl | |- ( H Isom R , S ( A , B ) -> ( y e. ran H <-> E. x e. A ( H ` x ) = y ) ) |
| 11 | 7 10 | bitr3d | |- ( H Isom R , S ( A , B ) -> ( y e. B <-> E. x e. A ( H ` x ) = y ) ) |
| 12 | fvex | |- ( H ` D ) e. _V |
|
| 13 | vex | |- y e. _V |
|
| 14 | 13 | eliniseg | |- ( ( H ` D ) e. _V -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
| 15 | 12 14 | mp1i | |- ( H Isom R , S ( A , B ) -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
| 16 | 11 15 | anbi12d | |- ( H Isom R , S ( A , B ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 17 | 16 | adantr | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 18 | elin | |- ( x e. ( A i^i ( `' R " { D } ) ) <-> ( x e. A /\ x e. ( `' R " { D } ) ) ) |
|
| 19 | vex | |- x e. _V |
|
| 20 | 19 | eliniseg | |- ( D e. A -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
| 21 | 20 | anbi2d | |- ( D e. A -> ( ( x e. A /\ x e. ( `' R " { D } ) ) <-> ( x e. A /\ x R D ) ) ) |
| 22 | 18 21 | bitrid | |- ( D e. A -> ( x e. ( A i^i ( `' R " { D } ) ) <-> ( x e. A /\ x R D ) ) ) |
| 23 | 22 | anbi1d | |- ( D e. A -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( ( x e. A /\ x R D ) /\ x H y ) ) ) |
| 24 | anass | |- ( ( ( x e. A /\ x R D ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) |
|
| 25 | 23 24 | bitrdi | |- ( D e. A -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) ) |
| 26 | 25 | adantl | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) ) |
| 27 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D <-> ( H ` x ) S ( H ` D ) ) ) |
|
| 28 | 3 8 | syl | |- ( H Isom R , S ( A , B ) -> H Fn A ) |
| 29 | fnbrfvb | |- ( ( H Fn A /\ x e. A ) -> ( ( H ` x ) = y <-> x H y ) ) |
|
| 30 | 29 | bicomd | |- ( ( H Fn A /\ x e. A ) -> ( x H y <-> ( H ` x ) = y ) ) |
| 31 | 28 30 | sylan | |- ( ( H Isom R , S ( A , B ) /\ x e. A ) -> ( x H y <-> ( H ` x ) = y ) ) |
| 32 | 31 | adantrr | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x H y <-> ( H ` x ) = y ) ) |
| 33 | 27 32 | anbi12d | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) ) ) |
| 34 | ancom | |- ( ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) <-> ( ( H ` x ) = y /\ ( H ` x ) S ( H ` D ) ) ) |
|
| 35 | breq1 | |- ( ( H ` x ) = y -> ( ( H ` x ) S ( H ` D ) <-> y S ( H ` D ) ) ) |
|
| 36 | 35 | pm5.32i | |- ( ( ( H ` x ) = y /\ ( H ` x ) S ( H ` D ) ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) |
| 37 | 34 36 | bitri | |- ( ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) |
| 38 | 33 37 | bitrdi | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 39 | 38 | exp32 | |- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) ) |
| 40 | 39 | com23 | |- ( H Isom R , S ( A , B ) -> ( D e. A -> ( x e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) ) |
| 41 | 40 | imp | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( x e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
| 42 | 41 | pm5.32d | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. A /\ ( x R D /\ x H y ) ) <-> ( x e. A /\ ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
| 43 | 26 42 | bitrd | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
| 44 | 43 | rexbidv2 | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( E. x e. ( A i^i ( `' R " { D } ) ) x H y <-> E. x e. A ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 45 | r19.41v | |- ( E. x e. A ( ( H ` x ) = y /\ y S ( H ` D ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) |
|
| 46 | 44 45 | bitrdi | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( E. x e. ( A i^i ( `' R " { D } ) ) x H y <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 47 | 17 46 | bitr4d | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> E. x e. ( A i^i ( `' R " { D } ) ) x H y ) ) |
| 48 | 2 47 | bitrid | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( y e. ( B i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. ( A i^i ( `' R " { D } ) ) x H y ) ) |
| 49 | 48 | eqabdv | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( B i^i ( `' S " { ( H ` D ) } ) ) = { y | E. x e. ( A i^i ( `' R " { D } ) ) x H y } ) |
| 50 | 1 49 | eqtr4id | |- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( H " ( A i^i ( `' R " { D } ) ) ) = ( B i^i ( `' S " { ( H ` D ) } ) ) ) |