This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of TakeutiZaring p. 91. (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardlim | |- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | |- ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) <-> _om C_ suc x ) ) |
|
| 2 | 1 | biimpd | |- ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> _om C_ suc x ) ) |
| 3 | limom | |- Lim _om |
|
| 4 | limsssuc | |- ( Lim _om -> ( _om C_ x <-> _om C_ suc x ) ) |
|
| 5 | 3 4 | ax-mp | |- ( _om C_ x <-> _om C_ suc x ) |
| 6 | infensuc | |- ( ( x e. On /\ _om C_ x ) -> x ~~ suc x ) |
|
| 7 | 6 | ex | |- ( x e. On -> ( _om C_ x -> x ~~ suc x ) ) |
| 8 | 5 7 | biimtrrid | |- ( x e. On -> ( _om C_ suc x -> x ~~ suc x ) ) |
| 9 | 2 8 | sylan9r | |- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ suc x ) ) |
| 10 | breq2 | |- ( ( card ` A ) = suc x -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) ) |
|
| 11 | 10 | adantl | |- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) ) |
| 12 | 9 11 | sylibrd | |- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) ) |
| 13 | 12 | ex | |- ( x e. On -> ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) ) ) |
| 14 | 13 | com3r | |- ( _om C_ ( card ` A ) -> ( x e. On -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) ) ) |
| 15 | 14 | imp | |- ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) ) |
| 16 | vex | |- x e. _V |
|
| 17 | 16 | sucid | |- x e. suc x |
| 18 | eleq2 | |- ( ( card ` A ) = suc x -> ( x e. ( card ` A ) <-> x e. suc x ) ) |
|
| 19 | 17 18 | mpbiri | |- ( ( card ` A ) = suc x -> x e. ( card ` A ) ) |
| 20 | cardidm | |- ( card ` ( card ` A ) ) = ( card ` A ) |
|
| 21 | 19 20 | eleqtrrdi | |- ( ( card ` A ) = suc x -> x e. ( card ` ( card ` A ) ) ) |
| 22 | cardne | |- ( x e. ( card ` ( card ` A ) ) -> -. x ~~ ( card ` A ) ) |
|
| 23 | 21 22 | syl | |- ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) ) |
| 24 | 23 | a1i | |- ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) ) ) |
| 25 | 15 24 | pm2.65d | |- ( ( _om C_ ( card ` A ) /\ x e. On ) -> -. ( card ` A ) = suc x ) |
| 26 | 25 | nrexdv | |- ( _om C_ ( card ` A ) -> -. E. x e. On ( card ` A ) = suc x ) |
| 27 | peano1 | |- (/) e. _om |
|
| 28 | ssel | |- ( _om C_ ( card ` A ) -> ( (/) e. _om -> (/) e. ( card ` A ) ) ) |
|
| 29 | 27 28 | mpi | |- ( _om C_ ( card ` A ) -> (/) e. ( card ` A ) ) |
| 30 | n0i | |- ( (/) e. ( card ` A ) -> -. ( card ` A ) = (/) ) |
|
| 31 | cardon | |- ( card ` A ) e. On |
|
| 32 | 31 | onordi | |- Ord ( card ` A ) |
| 33 | ordzsl | |- ( Ord ( card ` A ) <-> ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
|
| 34 | 32 33 | mpbi | |- ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) |
| 35 | 3orass | |- ( ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) <-> ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) ) |
|
| 36 | 34 35 | mpbi | |- ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
| 37 | 36 | ori | |- ( -. ( card ` A ) = (/) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
| 38 | 29 30 37 | 3syl | |- ( _om C_ ( card ` A ) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
| 39 | 38 | ord | |- ( _om C_ ( card ` A ) -> ( -. E. x e. On ( card ` A ) = suc x -> Lim ( card ` A ) ) ) |
| 40 | 26 39 | mpd | |- ( _om C_ ( card ` A ) -> Lim ( card ` A ) ) |
| 41 | limomss | |- ( Lim ( card ` A ) -> _om C_ ( card ` A ) ) |
|
| 42 | 40 41 | impbii | |- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |