This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance law for Cartesian product. Proposition 10.33(2) of TakeutiZaring p. 92. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpdom.2 | |- C e. _V |
|
| Assertion | xpdom2 | |- ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpdom.2 | |- C e. _V |
|
| 2 | brdomi | |- ( A ~<_ B -> E. f f : A -1-1-> B ) |
|
| 3 | f1f | |- ( f : A -1-1-> B -> f : A --> B ) |
|
| 4 | ffvelcdm | |- ( ( f : A --> B /\ U. ran { x } e. A ) -> ( f ` U. ran { x } ) e. B ) |
|
| 5 | 4 | ex | |- ( f : A --> B -> ( U. ran { x } e. A -> ( f ` U. ran { x } ) e. B ) ) |
| 6 | 3 5 | syl | |- ( f : A -1-1-> B -> ( U. ran { x } e. A -> ( f ` U. ran { x } ) e. B ) ) |
| 7 | 6 | anim2d | |- ( f : A -1-1-> B -> ( ( U. dom { x } e. C /\ U. ran { x } e. A ) -> ( U. dom { x } e. C /\ ( f ` U. ran { x } ) e. B ) ) ) |
| 8 | 7 | adantld | |- ( f : A -1-1-> B -> ( ( x = <. U. dom { x } , U. ran { x } >. /\ ( U. dom { x } e. C /\ U. ran { x } e. A ) ) -> ( U. dom { x } e. C /\ ( f ` U. ran { x } ) e. B ) ) ) |
| 9 | elxp4 | |- ( x e. ( C X. A ) <-> ( x = <. U. dom { x } , U. ran { x } >. /\ ( U. dom { x } e. C /\ U. ran { x } e. A ) ) ) |
|
| 10 | opelxp | |- ( <. U. dom { x } , ( f ` U. ran { x } ) >. e. ( C X. B ) <-> ( U. dom { x } e. C /\ ( f ` U. ran { x } ) e. B ) ) |
|
| 11 | 8 9 10 | 3imtr4g | |- ( f : A -1-1-> B -> ( x e. ( C X. A ) -> <. U. dom { x } , ( f ` U. ran { x } ) >. e. ( C X. B ) ) ) |
| 12 | 11 | adantl | |- ( ( A ~<_ B /\ f : A -1-1-> B ) -> ( x e. ( C X. A ) -> <. U. dom { x } , ( f ` U. ran { x } ) >. e. ( C X. B ) ) ) |
| 13 | elxp2 | |- ( x e. ( C X. A ) <-> E. z e. C E. w e. A x = <. z , w >. ) |
|
| 14 | elxp2 | |- ( y e. ( C X. A ) <-> E. v e. C E. u e. A y = <. v , u >. ) |
|
| 15 | vex | |- z e. _V |
|
| 16 | fvex | |- ( f ` w ) e. _V |
|
| 17 | 15 16 | opth | |- ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ ( f ` w ) = ( f ` u ) ) ) |
| 18 | f1fveq | |- ( ( f : A -1-1-> B /\ ( w e. A /\ u e. A ) ) -> ( ( f ` w ) = ( f ` u ) <-> w = u ) ) |
|
| 19 | 18 | ancoms | |- ( ( ( w e. A /\ u e. A ) /\ f : A -1-1-> B ) -> ( ( f ` w ) = ( f ` u ) <-> w = u ) ) |
| 20 | 19 | anbi2d | |- ( ( ( w e. A /\ u e. A ) /\ f : A -1-1-> B ) -> ( ( z = v /\ ( f ` w ) = ( f ` u ) ) <-> ( z = v /\ w = u ) ) ) |
| 21 | 17 20 | bitrid | |- ( ( ( w e. A /\ u e. A ) /\ f : A -1-1-> B ) -> ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ w = u ) ) ) |
| 22 | 21 | ex | |- ( ( w e. A /\ u e. A ) -> ( f : A -1-1-> B -> ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ w = u ) ) ) ) |
| 23 | 22 | ad2ant2l | |- ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) -> ( f : A -1-1-> B -> ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ w = u ) ) ) ) |
| 24 | 23 | imp | |- ( ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) /\ f : A -1-1-> B ) -> ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ w = u ) ) ) |
| 25 | 24 | adantlr | |- ( ( ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) /\ ( x = <. z , w >. /\ y = <. v , u >. ) ) /\ f : A -1-1-> B ) -> ( <. z , ( f ` w ) >. = <. v , ( f ` u ) >. <-> ( z = v /\ w = u ) ) ) |
| 26 | sneq | |- ( x = <. z , w >. -> { x } = { <. z , w >. } ) |
|
| 27 | 26 | dmeqd | |- ( x = <. z , w >. -> dom { x } = dom { <. z , w >. } ) |
| 28 | 27 | unieqd | |- ( x = <. z , w >. -> U. dom { x } = U. dom { <. z , w >. } ) |
| 29 | vex | |- w e. _V |
|
| 30 | 15 29 | op1sta | |- U. dom { <. z , w >. } = z |
| 31 | 28 30 | eqtrdi | |- ( x = <. z , w >. -> U. dom { x } = z ) |
| 32 | 26 | rneqd | |- ( x = <. z , w >. -> ran { x } = ran { <. z , w >. } ) |
| 33 | 32 | unieqd | |- ( x = <. z , w >. -> U. ran { x } = U. ran { <. z , w >. } ) |
| 34 | 15 29 | op2nda | |- U. ran { <. z , w >. } = w |
| 35 | 33 34 | eqtrdi | |- ( x = <. z , w >. -> U. ran { x } = w ) |
| 36 | 35 | fveq2d | |- ( x = <. z , w >. -> ( f ` U. ran { x } ) = ( f ` w ) ) |
| 37 | 31 36 | opeq12d | |- ( x = <. z , w >. -> <. U. dom { x } , ( f ` U. ran { x } ) >. = <. z , ( f ` w ) >. ) |
| 38 | sneq | |- ( y = <. v , u >. -> { y } = { <. v , u >. } ) |
|
| 39 | 38 | dmeqd | |- ( y = <. v , u >. -> dom { y } = dom { <. v , u >. } ) |
| 40 | 39 | unieqd | |- ( y = <. v , u >. -> U. dom { y } = U. dom { <. v , u >. } ) |
| 41 | vex | |- v e. _V |
|
| 42 | vex | |- u e. _V |
|
| 43 | 41 42 | op1sta | |- U. dom { <. v , u >. } = v |
| 44 | 40 43 | eqtrdi | |- ( y = <. v , u >. -> U. dom { y } = v ) |
| 45 | 38 | rneqd | |- ( y = <. v , u >. -> ran { y } = ran { <. v , u >. } ) |
| 46 | 45 | unieqd | |- ( y = <. v , u >. -> U. ran { y } = U. ran { <. v , u >. } ) |
| 47 | 41 42 | op2nda | |- U. ran { <. v , u >. } = u |
| 48 | 46 47 | eqtrdi | |- ( y = <. v , u >. -> U. ran { y } = u ) |
| 49 | 48 | fveq2d | |- ( y = <. v , u >. -> ( f ` U. ran { y } ) = ( f ` u ) ) |
| 50 | 44 49 | opeq12d | |- ( y = <. v , u >. -> <. U. dom { y } , ( f ` U. ran { y } ) >. = <. v , ( f ` u ) >. ) |
| 51 | 37 50 | eqeqan12d | |- ( ( x = <. z , w >. /\ y = <. v , u >. ) -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> <. z , ( f ` w ) >. = <. v , ( f ` u ) >. ) ) |
| 52 | 51 | ad2antlr | |- ( ( ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) /\ ( x = <. z , w >. /\ y = <. v , u >. ) ) /\ f : A -1-1-> B ) -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> <. z , ( f ` w ) >. = <. v , ( f ` u ) >. ) ) |
| 53 | eqeq12 | |- ( ( x = <. z , w >. /\ y = <. v , u >. ) -> ( x = y <-> <. z , w >. = <. v , u >. ) ) |
|
| 54 | 15 29 | opth | |- ( <. z , w >. = <. v , u >. <-> ( z = v /\ w = u ) ) |
| 55 | 53 54 | bitrdi | |- ( ( x = <. z , w >. /\ y = <. v , u >. ) -> ( x = y <-> ( z = v /\ w = u ) ) ) |
| 56 | 55 | ad2antlr | |- ( ( ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) /\ ( x = <. z , w >. /\ y = <. v , u >. ) ) /\ f : A -1-1-> B ) -> ( x = y <-> ( z = v /\ w = u ) ) ) |
| 57 | 25 52 56 | 3bitr4d | |- ( ( ( ( ( z e. C /\ w e. A ) /\ ( v e. C /\ u e. A ) ) /\ ( x = <. z , w >. /\ y = <. v , u >. ) ) /\ f : A -1-1-> B ) -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) |
| 58 | 57 | exp53 | |- ( ( z e. C /\ w e. A ) -> ( ( v e. C /\ u e. A ) -> ( x = <. z , w >. -> ( y = <. v , u >. -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) ) ) ) |
| 59 | 58 | com23 | |- ( ( z e. C /\ w e. A ) -> ( x = <. z , w >. -> ( ( v e. C /\ u e. A ) -> ( y = <. v , u >. -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) ) ) ) |
| 60 | 59 | rexlimivv | |- ( E. z e. C E. w e. A x = <. z , w >. -> ( ( v e. C /\ u e. A ) -> ( y = <. v , u >. -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) ) ) |
| 61 | 60 | rexlimdvv | |- ( E. z e. C E. w e. A x = <. z , w >. -> ( E. v e. C E. u e. A y = <. v , u >. -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) ) |
| 62 | 61 | imp | |- ( ( E. z e. C E. w e. A x = <. z , w >. /\ E. v e. C E. u e. A y = <. v , u >. ) -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) |
| 63 | 13 14 62 | syl2anb | |- ( ( x e. ( C X. A ) /\ y e. ( C X. A ) ) -> ( f : A -1-1-> B -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) |
| 64 | 63 | com12 | |- ( f : A -1-1-> B -> ( ( x e. ( C X. A ) /\ y e. ( C X. A ) ) -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) |
| 65 | 64 | adantl | |- ( ( A ~<_ B /\ f : A -1-1-> B ) -> ( ( x e. ( C X. A ) /\ y e. ( C X. A ) ) -> ( <. U. dom { x } , ( f ` U. ran { x } ) >. = <. U. dom { y } , ( f ` U. ran { y } ) >. <-> x = y ) ) ) |
| 66 | reldom | |- Rel ~<_ |
|
| 67 | 66 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 68 | xpexg | |- ( ( C e. _V /\ A e. _V ) -> ( C X. A ) e. _V ) |
|
| 69 | 1 67 68 | sylancr | |- ( A ~<_ B -> ( C X. A ) e. _V ) |
| 70 | 69 | adantr | |- ( ( A ~<_ B /\ f : A -1-1-> B ) -> ( C X. A ) e. _V ) |
| 71 | 66 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 72 | xpexg | |- ( ( C e. _V /\ B e. _V ) -> ( C X. B ) e. _V ) |
|
| 73 | 1 71 72 | sylancr | |- ( A ~<_ B -> ( C X. B ) e. _V ) |
| 74 | 73 | adantr | |- ( ( A ~<_ B /\ f : A -1-1-> B ) -> ( C X. B ) e. _V ) |
| 75 | 12 65 70 74 | dom3d | |- ( ( A ~<_ B /\ f : A -1-1-> B ) -> ( C X. A ) ~<_ ( C X. B ) ) |
| 76 | 2 75 | exlimddv | |- ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) |