This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunel | |- ( ( Ord A /\ B e. A /\ C e. A ) -> ( B u. C ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi | |- ( ( B e. A /\ C e. A ) -> { B , C } C_ A ) |
|
| 2 | 1 | 3adant1 | |- ( ( Ord A /\ B e. A /\ C e. A ) -> { B , C } C_ A ) |
| 3 | ordelon | |- ( ( Ord A /\ B e. A ) -> B e. On ) |
|
| 4 | 3 | 3adant3 | |- ( ( Ord A /\ B e. A /\ C e. A ) -> B e. On ) |
| 5 | ordelon | |- ( ( Ord A /\ C e. A ) -> C e. On ) |
|
| 6 | ordunpr | |- ( ( B e. On /\ C e. On ) -> ( B u. C ) e. { B , C } ) |
|
| 7 | 4 5 6 | 3imp3i2an | |- ( ( Ord A /\ B e. A /\ C e. A ) -> ( B u. C ) e. { B , C } ) |
| 8 | 2 7 | sseldd | |- ( ( Ord A /\ B e. A /\ C e. A ) -> ( B u. C ) e. A ) |