This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 15-Jan-2013) (Revised by Mario Carneiro, 4-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardsdomel | |- ( ( A e. On /\ B e. dom card ) -> ( A ~< B <-> A e. ( card ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 | |- ( B e. dom card -> ( card ` B ) ~~ B ) |
|
| 2 | 1 | ensymd | |- ( B e. dom card -> B ~~ ( card ` B ) ) |
| 3 | sdomentr | |- ( ( A ~< B /\ B ~~ ( card ` B ) ) -> A ~< ( card ` B ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A ~< B /\ B e. dom card ) -> A ~< ( card ` B ) ) |
| 5 | ssdomg | |- ( A e. On -> ( ( card ` B ) C_ A -> ( card ` B ) ~<_ A ) ) |
|
| 6 | cardon | |- ( card ` B ) e. On |
|
| 7 | domtriord | |- ( ( ( card ` B ) e. On /\ A e. On ) -> ( ( card ` B ) ~<_ A <-> -. A ~< ( card ` B ) ) ) |
|
| 8 | 6 7 | mpan | |- ( A e. On -> ( ( card ` B ) ~<_ A <-> -. A ~< ( card ` B ) ) ) |
| 9 | 5 8 | sylibd | |- ( A e. On -> ( ( card ` B ) C_ A -> -. A ~< ( card ` B ) ) ) |
| 10 | 9 | con2d | |- ( A e. On -> ( A ~< ( card ` B ) -> -. ( card ` B ) C_ A ) ) |
| 11 | ontri1 | |- ( ( ( card ` B ) e. On /\ A e. On ) -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
|
| 12 | 6 11 | mpan | |- ( A e. On -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
| 13 | 12 | con2bid | |- ( A e. On -> ( A e. ( card ` B ) <-> -. ( card ` B ) C_ A ) ) |
| 14 | 10 13 | sylibrd | |- ( A e. On -> ( A ~< ( card ` B ) -> A e. ( card ` B ) ) ) |
| 15 | 4 14 | syl5 | |- ( A e. On -> ( ( A ~< B /\ B e. dom card ) -> A e. ( card ` B ) ) ) |
| 16 | 15 | expcomd | |- ( A e. On -> ( B e. dom card -> ( A ~< B -> A e. ( card ` B ) ) ) ) |
| 17 | 16 | imp | |- ( ( A e. On /\ B e. dom card ) -> ( A ~< B -> A e. ( card ` B ) ) ) |
| 18 | cardsdomelir | |- ( A e. ( card ` B ) -> A ~< B ) |
|
| 19 | 17 18 | impbid1 | |- ( ( A e. On /\ B e. dom card ) -> ( A ~< B <-> A e. ( card ` B ) ) ) |