This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzoppg.b | |- B = ( Base ` G ) |
|
| gsumzoppg.0 | |- .0. = ( 0g ` G ) |
||
| gsumzoppg.z | |- Z = ( Cntz ` G ) |
||
| gsumzoppg.o | |- O = ( oppG ` G ) |
||
| gsumzoppg.g | |- ( ph -> G e. Mnd ) |
||
| gsumzoppg.a | |- ( ph -> A e. V ) |
||
| gsumzoppg.f | |- ( ph -> F : A --> B ) |
||
| gsumzoppg.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzoppg.n | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumzoppg | |- ( ph -> ( O gsum F ) = ( G gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzoppg.b | |- B = ( Base ` G ) |
|
| 2 | gsumzoppg.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzoppg.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzoppg.o | |- O = ( oppG ` G ) |
|
| 5 | gsumzoppg.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumzoppg.a | |- ( ph -> A e. V ) |
|
| 7 | gsumzoppg.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumzoppg.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumzoppg.n | |- ( ph -> F finSupp .0. ) |
|
| 10 | 4 | oppgmnd | |- ( G e. Mnd -> O e. Mnd ) |
| 11 | 5 10 | syl | |- ( ph -> O e. Mnd ) |
| 12 | 4 2 | oppgid | |- .0. = ( 0g ` O ) |
| 13 | 12 | gsumz | |- ( ( O e. Mnd /\ A e. V ) -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) |
| 14 | 11 6 13 | syl2anc | |- ( ph -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) |
| 15 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 16 | 5 6 15 | syl2anc | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 17 | 14 16 | eqtr4d | |- ( ph -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 18 | 17 | adantr | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 19 | 2 | fvexi | |- .0. e. _V |
| 20 | 19 | a1i | |- ( ph -> .0. e. _V ) |
| 21 | ssid | |- ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) |
|
| 22 | 7 6 | fexd | |- ( ph -> F e. _V ) |
| 23 | suppimacnv | |- ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
|
| 24 | 22 19 23 | sylancl | |- ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
| 25 | 24 | sseq1d | |- ( ph -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
| 26 | 21 25 | mpbiri | |- ( ph -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 27 | 7 6 20 26 | gsumcllem | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 28 | 27 | oveq2d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( O gsum ( k e. A |-> .0. ) ) ) |
| 29 | 27 | oveq2d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 30 | 18 28 29 | 3eqtr4d | |- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( G gsum F ) ) |
| 31 | 30 | ex | |- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) -> ( O gsum F ) = ( G gsum F ) ) ) |
| 32 | simprl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) |
|
| 33 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 34 | 32 33 | eleqtrdi | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. ( ZZ>= ` 1 ) ) |
| 35 | 7 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> B ) |
| 36 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 37 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 38 | 36 37 | sylib | |- ( F : A --> B -> F : A -onto-> ran F ) |
| 39 | fof | |- ( F : A -onto-> ran F -> F : A --> ran F ) |
|
| 40 | 35 38 39 | 3syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ran F ) |
| 41 | 5 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> G e. Mnd ) |
| 42 | 1 | submacs | |- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
| 43 | acsmre | |- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
|
| 44 | 41 42 43 | 3syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
| 45 | eqid | |- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
|
| 46 | 35 | frnd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ B ) |
| 47 | 44 45 46 | mrcssidd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 48 | 40 47 | fssd | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 49 | f1of1 | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
|
| 50 | 49 | ad2antll | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
| 51 | cnvimass | |- ( `' F " ( _V \ { .0. } ) ) C_ dom F |
|
| 52 | 51 35 | fssdm | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
| 53 | f1ss | |- ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) /\ ( `' F " ( _V \ { .0. } ) ) C_ A ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
|
| 54 | 50 52 53 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
| 55 | f1f | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
|
| 56 | 54 55 | syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
| 57 | fco | |- ( ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
|
| 58 | 48 56 57 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 59 | 58 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( F o. f ) ` x ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 60 | 45 | mrccl | |- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ ran F C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
| 61 | 44 46 60 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
| 62 | 4 | oppgsubm | |- ( SubMnd ` G ) = ( SubMnd ` O ) |
| 63 | 61 62 | eleqtrdi | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) ) |
| 64 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 65 | 64 | submcl | |- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 66 | 65 | 3expb | |- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 67 | 63 66 | sylan | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
| 68 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 69 | 68 4 64 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) |
| 70 | 8 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 71 | eqid | |- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
|
| 72 | 3 45 71 | cntzspan | |- ( ( G e. Mnd /\ ran F C_ ( Z ` ran F ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
| 73 | 41 70 72 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
| 74 | 71 3 | submcmn2 | |- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
| 75 | 61 74 | syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
| 76 | 73 75 | mpbid | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
| 77 | 76 | sselda | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
| 78 | 68 3 | cntzi | |- ( ( x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 79 | 77 78 | sylan | |- ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 80 | 69 79 | eqtr4id | |- ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) |
| 81 | 80 | anasss | |- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) |
| 82 | 34 59 67 81 | seqfeq4 | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 83 | 4 1 | oppgbas | |- B = ( Base ` O ) |
| 84 | eqid | |- ( Cntz ` O ) = ( Cntz ` O ) |
|
| 85 | 41 10 | syl | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> O e. Mnd ) |
| 86 | 6 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> A e. V ) |
| 87 | 4 3 | oppgcntz | |- ( Z ` ran F ) = ( ( Cntz ` O ) ` ran F ) |
| 88 | 70 87 | sseqtrdi | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( Cntz ` O ) ` ran F ) ) |
| 89 | suppssdm | |- ( F supp .0. ) C_ dom F |
|
| 90 | 24 89 | eqsstrrdi | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ dom F ) |
| 91 | 7 90 | fssdmd | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
| 92 | 91 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
| 93 | 50 92 53 | syl2anc | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
| 94 | 25 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
| 95 | 21 94 | mpbiri | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 96 | f1ofo | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) ) |
|
| 97 | forn | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
|
| 98 | 96 97 | syl | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
| 99 | 98 | sseq2d | |- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
| 100 | 99 | ad2antll | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
| 101 | 95 100 | mpbird | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 102 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 103 | 83 12 64 84 85 86 35 88 32 93 101 102 | gsumval3 | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 104 | 26 | adantr | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 105 | 104 100 | mpbird | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 106 | 1 2 68 3 41 86 35 70 32 93 105 102 | gsumval3 | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 107 | 82 103 106 | 3eqtr4d | |- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( G gsum F ) ) |
| 108 | 107 | expr | |- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
| 109 | 108 | exlimdv | |- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
| 110 | 109 | expimpd | |- ( ph -> ( ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
| 111 | 9 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 112 | 24 111 | eqeltrrd | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) e. Fin ) |
| 113 | fz1f1o | |- ( ( `' F " ( _V \ { .0. } ) ) e. Fin -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
|
| 114 | 112 113 | syl | |- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 115 | 31 110 114 | mpjaod | |- ( ph -> ( O gsum F ) = ( G gsum F ) ) |