This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | |- O = ( oppG ` R ) |
|
| Assertion | oppgmnd | |- ( R e. Mnd -> O e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | oppgbas | |- ( Base ` R ) = ( Base ` O ) |
| 4 | 3 | a1i | |- ( R e. Mnd -> ( Base ` R ) = ( Base ` O ) ) |
| 5 | eqidd | |- ( R e. Mnd -> ( +g ` O ) = ( +g ` O ) ) |
|
| 6 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 7 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 8 | 6 1 7 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` R ) x ) |
| 9 | 2 6 | mndcl | |- ( ( R e. Mnd /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( y ( +g ` R ) x ) e. ( Base ` R ) ) |
| 10 | 9 | 3com23 | |- ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( y ( +g ` R ) x ) e. ( Base ` R ) ) |
| 11 | 8 10 | eqeltrid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` O ) y ) e. ( Base ` R ) ) |
| 12 | simpl | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> R e. Mnd ) |
|
| 13 | simpr3 | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> z e. ( Base ` R ) ) |
|
| 14 | simpr2 | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> y e. ( Base ` R ) ) |
|
| 15 | simpr1 | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> x e. ( Base ` R ) ) |
|
| 16 | 2 6 | mndass | |- ( ( R e. Mnd /\ ( z e. ( Base ` R ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( z ( +g ` R ) y ) ( +g ` R ) x ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) ) |
| 17 | 12 13 14 15 16 | syl13anc | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( z ( +g ` R ) y ) ( +g ` R ) x ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) ) |
| 18 | 17 | eqcomd | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( +g ` R ) ( y ( +g ` R ) x ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) ) |
| 19 | 8 | oveq1i | |- ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( ( y ( +g ` R ) x ) ( +g ` O ) z ) |
| 20 | 6 1 7 | oppgplus | |- ( ( y ( +g ` R ) x ) ( +g ` O ) z ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) |
| 21 | 19 20 | eqtri | |- ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) |
| 22 | 6 1 7 | oppgplus | |- ( y ( +g ` O ) z ) = ( z ( +g ` R ) y ) |
| 23 | 22 | oveq2i | |- ( x ( +g ` O ) ( y ( +g ` O ) z ) ) = ( x ( +g ` O ) ( z ( +g ` R ) y ) ) |
| 24 | 6 1 7 | oppgplus | |- ( x ( +g ` O ) ( z ( +g ` R ) y ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) |
| 25 | 23 24 | eqtri | |- ( x ( +g ` O ) ( y ( +g ` O ) z ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) |
| 26 | 18 21 25 | 3eqtr4g | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( x ( +g ` O ) ( y ( +g ` O ) z ) ) ) |
| 27 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 28 | 2 27 | mndidcl | |- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 29 | 6 1 7 | oppgplus | |- ( ( 0g ` R ) ( +g ` O ) x ) = ( x ( +g ` R ) ( 0g ` R ) ) |
| 30 | 2 6 27 | mndrid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 31 | 29 30 | eqtrid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` O ) x ) = x ) |
| 32 | 6 1 7 | oppgplus | |- ( x ( +g ` O ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` R ) x ) |
| 33 | 2 6 27 | mndlid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) x ) = x ) |
| 34 | 32 33 | eqtrid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x ( +g ` O ) ( 0g ` R ) ) = x ) |
| 35 | 4 5 11 26 28 31 34 | ismndd | |- ( R e. Mnd -> O e. Mnd ) |