This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgabl.h | |- H = ( G |`s S ) |
|
| submcmn2.z | |- Z = ( Cntz ` G ) |
||
| Assertion | submcmn2 | |- ( S e. ( SubMnd ` G ) -> ( H e. CMnd <-> S C_ ( Z ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | |- H = ( G |`s S ) |
|
| 2 | submcmn2.z | |- Z = ( Cntz ` G ) |
|
| 3 | 1 | submbas | |- ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) |
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 1 4 | ressplusg | |- ( S e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 6 | 5 | oveqd | |- ( S e. ( SubMnd ` G ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 7 | 5 | oveqd | |- ( S e. ( SubMnd ` G ) -> ( y ( +g ` G ) x ) = ( y ( +g ` H ) x ) ) |
| 8 | 6 7 | eqeq12d | |- ( S e. ( SubMnd ` G ) -> ( ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 9 | 3 8 | raleqbidv | |- ( S e. ( SubMnd ` G ) -> ( A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 10 | 3 9 | raleqbidv | |- ( S e. ( SubMnd ` G ) -> ( A. x e. S A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | 11 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 13 | 11 4 2 | sscntz | |- ( ( S C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( S C_ ( Z ` S ) <-> A. x e. S A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 14 | 12 12 13 | syl2anc | |- ( S e. ( SubMnd ` G ) -> ( S C_ ( Z ` S ) <-> A. x e. S A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 15 | 1 | submmnd | |- ( S e. ( SubMnd ` G ) -> H e. Mnd ) |
| 16 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 17 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 18 | 16 17 | iscmn | |- ( H e. CMnd <-> ( H e. Mnd /\ A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 19 | 18 | baib | |- ( H e. Mnd -> ( H e. CMnd <-> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 20 | 15 19 | syl | |- ( S e. ( SubMnd ` G ) -> ( H e. CMnd <-> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 21 | 10 14 20 | 3bitr4rd | |- ( S e. ( SubMnd ` G ) -> ( H e. CMnd <-> S C_ ( Z ` S ) ) ) |