This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzoppg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzoppg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzoppg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzoppg.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | ||
| gsumzoppg.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzoppg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzoppg.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzoppg.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzoppg.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzoppg | ⊢ ( 𝜑 → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzoppg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzoppg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzoppg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzoppg.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 5 | gsumzoppg.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumzoppg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumzoppg.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumzoppg.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumzoppg.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | 4 | oppgmnd | ⊢ ( 𝐺 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Mnd ) |
| 12 | 4 2 | oppgid | ⊢ 0 = ( 0g ‘ 𝑂 ) |
| 13 | 12 | gsumz | ⊢ ( ( 𝑂 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 14 | 11 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 15 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 16 | 5 6 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 17 | 14 16 | eqtr4d | ⊢ ( 𝜑 → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 19 | 2 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 21 | ssid | ⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) | |
| 22 | 7 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 23 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 24 | 22 19 23 | sylancl | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 25 | 24 | sseq1d | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ↔ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
| 26 | 21 25 | mpbiri | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 27 | 7 6 20 26 | gsumcllem | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg 𝐹 ) = ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 29 | 27 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 30 | 18 28 29 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |
| 31 | 30 | ex | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 32 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) | |
| 33 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 34 | 32 33 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 35 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 36 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 37 | dffn4 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) | |
| 38 | 36 37 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 39 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ ran 𝐹 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) | |
| 40 | 35 38 39 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 41 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐺 ∈ Mnd ) |
| 42 | 1 | submacs | ⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 43 | acsmre | ⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) | |
| 44 | 41 42 43 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 45 | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 46 | 35 | frnd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 47 | 44 45 46 | mrcssidd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 48 | 40 47 | fssd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 49 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 50 | 49 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 51 | cnvimass | ⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 | |
| 52 | 51 35 | fssdm | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
| 53 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) | |
| 54 | 50 52 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
| 55 | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
| 57 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) | |
| 58 | 48 56 57 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 59 | 58 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 60 | 45 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹 ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 61 | 44 46 60 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 62 | 4 | oppgsubm | ⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |
| 63 | 61 62 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ) |
| 64 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 65 | 64 | submcl | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 66 | 65 | 3expb | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 67 | 63 66 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 68 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 69 | 68 4 64 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
| 70 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 71 | eqid | ⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) | |
| 72 | 3 45 71 | cntzspan | ⊢ ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 73 | 41 70 72 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 74 | 71 3 | submcmn2 | ⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 75 | 61 74 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 76 | 73 75 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
| 77 | 76 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → 𝑥 ∈ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
| 78 | 68 3 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 79 | 77 78 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 80 | 69 79 | eqtr4id | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 81 | 80 | anasss | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 82 | 34 59 67 81 | seqfeq4 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( seq 1 ( ( +g ‘ 𝑂 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 83 | 4 1 | oppgbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 84 | eqid | ⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) | |
| 85 | 41 10 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑂 ∈ Mnd ) |
| 86 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐴 ∈ 𝑉 ) |
| 87 | 4 3 | oppgcntz | ⊢ ( 𝑍 ‘ ran 𝐹 ) = ( ( Cntz ‘ 𝑂 ) ‘ ran 𝐹 ) |
| 88 | 70 87 | sseqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( ( Cntz ‘ 𝑂 ) ‘ ran 𝐹 ) ) |
| 89 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 90 | 24 89 | eqsstrrdi | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 ) |
| 91 | 7 90 | fssdmd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
| 93 | 50 92 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
| 94 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ↔ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
| 95 | 21 94 | mpbiri | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 96 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 97 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 99 | 98 | sseq2d | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
| 100 | 99 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
| 101 | 95 100 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 102 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 103 | 83 12 64 84 85 86 35 88 32 93 101 102 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝑂 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝑂 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 104 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 105 | 104 100 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 106 | 1 2 68 3 41 86 35 70 32 93 105 102 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 107 | 82 103 106 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |
| 108 | 107 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 109 | 108 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 110 | 109 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 111 | 9 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 112 | 24 111 | eqeltrrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin ) |
| 113 | fz1f1o | ⊢ ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) | |
| 114 | 112 113 | syl | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 115 | 31 110 114 | mpjaod | ⊢ ( 𝜑 → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |