This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzspan.z | |- Z = ( Cntz ` G ) |
|
| cntzspan.k | |- K = ( mrCls ` ( SubMnd ` G ) ) |
||
| cntzspan.h | |- H = ( G |`s ( K ` S ) ) |
||
| Assertion | cntzspan | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> H e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzspan.z | |- Z = ( Cntz ` G ) |
|
| 2 | cntzspan.k | |- K = ( mrCls ` ( SubMnd ` G ) ) |
|
| 3 | cntzspan.h | |- H = ( G |`s ( K ` S ) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 | submacs | |- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 6 | 5 | adantr | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 7 | 6 | acsmred | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 8 | simpr | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` S ) ) |
|
| 9 | 4 1 | cntzssv | |- ( Z ` S ) C_ ( Base ` G ) |
| 10 | 8 9 | sstrdi | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Base ` G ) ) |
| 11 | 4 1 | cntzsubm | |- ( ( G e. Mnd /\ S C_ ( Base ` G ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
| 12 | 10 11 | syldan | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
| 13 | 2 | mrcsscl | |- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` S ) /\ ( Z ` S ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
| 14 | 7 8 12 13 | syl3anc | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
| 15 | 7 2 | mrcssvd | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Base ` G ) ) |
| 16 | 4 1 | cntzrec | |- ( ( ( K ` S ) C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
| 17 | 15 10 16 | syl2anc | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
| 18 | 14 17 | mpbid | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` ( K ` S ) ) ) |
| 19 | 4 1 | cntzsubm | |- ( ( G e. Mnd /\ ( K ` S ) C_ ( Base ` G ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
| 20 | 15 19 | syldan | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
| 21 | 2 | mrcsscl | |- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` ( K ` S ) ) /\ ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
| 22 | 7 18 20 21 | syl3anc | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
| 23 | 2 | mrccl | |- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Base ` G ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
| 24 | 7 10 23 | syl2anc | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
| 25 | 3 1 | submcmn2 | |- ( ( K ` S ) e. ( SubMnd ` G ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
| 26 | 24 25 | syl | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
| 27 | 22 26 | mpbird | |- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> H e. CMnd ) |