This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq4.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| seqfeq4.f | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
||
| seqfeq4.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
||
| seqfeq4.id | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
||
| Assertion | seqfeq4 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( Q , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq4.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | seqfeq4.f | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
|
| 3 | seqfeq4.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 4 | seqfeq4.id | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
|
| 5 | fvex | |- ( seq M ( .+ , F ) ` N ) e. _V |
|
| 6 | fvi | |- ( ( seq M ( .+ , F ) ` N ) e. _V -> ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( .+ , F ) ` N ) ) |
|
| 7 | 5 6 | ax-mp | |- ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( .+ , F ) ` N ) |
| 8 | ovex | |- ( x .+ y ) e. _V |
|
| 9 | fvi | |- ( ( x .+ y ) e. _V -> ( _I ` ( x .+ y ) ) = ( x .+ y ) ) |
|
| 10 | 8 9 | ax-mp | |- ( _I ` ( x .+ y ) ) = ( x .+ y ) |
| 11 | fvi | |- ( x e. _V -> ( _I ` x ) = x ) |
|
| 12 | 11 | elv | |- ( _I ` x ) = x |
| 13 | fvi | |- ( y e. _V -> ( _I ` y ) = y ) |
|
| 14 | 13 | elv | |- ( _I ` y ) = y |
| 15 | 12 14 | oveq12i | |- ( ( _I ` x ) Q ( _I ` y ) ) = ( x Q y ) |
| 16 | 4 10 15 | 3eqtr4g | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( _I ` ( x .+ y ) ) = ( ( _I ` x ) Q ( _I ` y ) ) ) |
| 17 | fvex | |- ( F ` x ) e. _V |
|
| 18 | fvi | |- ( ( F ` x ) e. _V -> ( _I ` ( F ` x ) ) = ( F ` x ) ) |
|
| 19 | 17 18 | mp1i | |- ( ( ph /\ x e. ( M ... N ) ) -> ( _I ` ( F ` x ) ) = ( F ` x ) ) |
| 20 | 3 2 1 16 19 | seqhomo | |- ( ph -> ( _I ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , F ) ` N ) ) |
| 21 | 7 20 | eqtr3id | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( Q , F ) ` N ) ) |